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Figure 2 - DEM for 

 the Regosols soil class 

Figure 4 - Spatial distribution of training sites for the different 

sampling strategies 

Introduction 
Digital Soil Mapping (DSM) is an advanced technique for 

mapping soil classes (Dobos et al., 2006) which has been 

developed to bridge the gap between existing soil maps based 

on traditional soil survey and the increasing demand for soil 

information. Indeed, at the European level, DSM has been 

driven by the urgent need to address the importance of soils 

and the growing concern about environmental disasters, the 

impact of human activities on soils and the role that soil has on 

global change. 

Artificial Neural Networks (ANNs) are sophisticated computer 

programs which are able to model complex functional 

relationships. As such, ANNs provide the means to predict soil 

types at locations without soil spatial data by combing existing 

soil maps with factors known to be responsible for the spatial 

variation of soils (McBratney et al., 2003). Thus, a set of 

variables related to soil forming factors and the respective soil 

type are used as training data for the ANNs, which construct 

rules (Tso & Mather, 2001) that can be extended to the 

unmapped areas.   

Whilst the literature provides a number of examples where 

DSM is presented as an efficient surveying technique and soil 

spatial variation is shown to be induced by a limited number of 

soil forming factors (Mora-Vallejo et al., 2008), still little is 

known about the impact that the training sites have on the 

predictive accuracy of the models. 

Indeed, sampling method and location of training sites is 

particularly important for ANNs because their rate of learning, 

convergion to a solution, network performance and ability to 

generalise depend on the efficiency of the layout of the 

sampling pattern which, in turn, depends on the presence of 

spatial periodicity of the phenomena.  Although all 

environmental variables exhibit spatial autocorrelation at some 

scale (Englund, 1988), high values found in the spatial 

distribution of the variables used to train an ANN is likely to 

affect its performance.   Thus, the main objective of this work 

is to assess the impact that sampling methods used to select 

training areas for an ANN have on their predictive accuracy. 

The study area is a catchment in Mondim de Basto, north-

western Portugal, approximately 900km2 in area. The 

catchment was chosen because it presents a varied 

geomorphological and ecological setting and a number of soils 

that are well representative of the soil types found in the 

region between the Douro and Minho rivers.  

 

Study area 

Figure 1 – Mondim de Basto catchment, in NW Portugal 

Material and methods 

 

The experimental setup for each training set used fixed input 

specifications, as presented in table 1 (200 pixels per class for 

training and testing), two network topology settings (1 hidden layer, no 

layer two nodes and either 7 or 8 layer one nodes), with a variety of 

training parameters changes which included using automatic training 

and a dynamic learning rate which, if used, could vary between 0.01 

and 0.2. The stopping criteria were achieving either a RMSE ≤ 0.01, 

an accuracy of 100% or a maximum number of iterations ranging 

from 1,000 to 100,000. 

 

Table 1 – Characteristics of the ANN.  

SRTM DEM 
90m 

Multicollinearity 
Testing 

Extraction of 
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Variables 

Slope steepness 

Upslope catchment area 

Plan and Profile curvatures 
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Wetness index  

Potential solar radiation 

Geological Map Vectorization 
Llithological 

Classes 

Corine Land 
Cover 2006 

Extraction of 
study area 

Land use 
Classes 

Soil Digital Map 
1:100 000 

Extraction of 
study area 

Soil Classes 

Geo-referenced Data - Coordinates 
(latitude and longitude) 

Latitude and 
Longitude 

Data: 

Sampling: 

Soil Spatial Data 

SS 

SRS 

SRPS 

SNPS RS 

Two different sampling strategies were implemented for training a 

multi-layer perceptron (MLP) neural network model in IDRISI Taiga 

(Clark Labs), using a highly popular supervised method known as 

error back-propagating algorithm (Haykin, 1999). Thus, the ANN was 

trained by presenting it a number of different examples of the same 

soil type drawn either (i) randomly (RS), or (ii) in a stratified fashion 

(SS). For the latter, training pixel vectors were located by choosing (a) 

random coordinates within soil types strata (SRS), (b) random 

coordinates within soil types strata and chosen evenly in the 

frequency space (Figure 4) (SRPS) and, (c) nearest coordinates 

within soil types strata and chosen evenly in the frequency space 

(SNPS). 

Digital soil data at 1:100000 were provided by DRAEM, the regional 

agriculture department of North West Portugal. In order to account for 

the possible effect of autocorrelation, the coordinates (latitude and 

longitude) were also included in the input vector to indicate location.  
 

Inputs 

Classifier parameters 

Group Parameter Default value 

Input specifications Avg. training pixels per class 500 
  Avg. testing pixels per class 500 

Network topology Hidden layers 1 

  Layer 1 nodes 1 

Training parameters Use automatic training no 

  Use dynamic learning rate no 
  Learning rate 0.01 

  End Learning rate 0.001 

  Momentum factor 0.5 

  Sigmoid constant "a" 1 

Stopping criteria RMS 0.01 

  Iterations 10000 

  Accuracy rate 1 

Table 2 – Impact of sampling method on the performance of 

ANN models and no. of iterations required to achieve the best 

results obtained with each method, assessed through 

predictive accuracy level and minimum and maximum RMSE 

values in the testing set. 
 

Results and discussion 

 

Conclusions 

 The main conclusions of this work are:  

(1) sampling strategy has a very important impact on the accuracy of 

soil predictive maps developed using ANNs and different 

strategies should be tested, and  

(2) sampling strategy benefits from reflecting high autocorrelation of 

factors of soil formation because the ANN learns faster that close 

neighbouring positions are more likely to have similar soil types, 

allowing the ANN to converge faster to a better solution.    

Spatial autocorrelation assessment, measured through 

Moran´s I, indicates that autocorrelation is significantly high for 

wetness index (0.65) and slope steepness (0.76) and very 

high for potential solar radiation (0.88) and altitude (0.99). 

Analysis of all the results obtained with the different model 

parameterisations shows that the predictive accuracy of the 

ANN models is highly dependent on the sampling method and 

highly correlated with RMSE but not so dependent on the 

number of iterations (Table 2).  

  

Whilst random sampling did not achieve as good predictive 

accuracy results as the one possible to obtain with stratified 

sampling (65% vs. 75%), it is clear that spatial autocorrelation 

causes an oustanding drop-off in the number of iterations 

required to achieve similar levels of accuracy (71% and 75%) 

and RMSE (0.31). Thus, accounting for spatial autocorrelation 

by choosing pixels that are as close as possible to each other 

(SNPS) resulted in only 5,000 iterations being required (as 

opposed to 30,000) to achieve similar accuracy levels. 
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Sampling 
Method 

Iterations 

Testing 
Accuracy 

(%) 
RMSE 

Min RMSE Max RMSE 

SRPS 50000 0.37 0.39 57.8 0.36 

RS 40000 0.36 0.46 65.4 0.35 

SNPS 5000 0.31 0.43 71.1 0.31 

SRS 30000 0.3 0.37 74.7 0.31 

Figure 3 - Example of the 51 values (50 percentiles + min value) selected to 

represent the frequency distribution of the elevation values for Regosols in Mondim 

de Basto 

Elevation values (m) for the soil class of Regosols (min:58;max:1298)

Percentiles selected representing the frequency of the elevation values for the Regosols class 

Percentiles (m) 

Figure 5 - Illustration of the configuration of an ANN showing the input 

maps, layer nodes and output map 

Predicted soil classes 
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