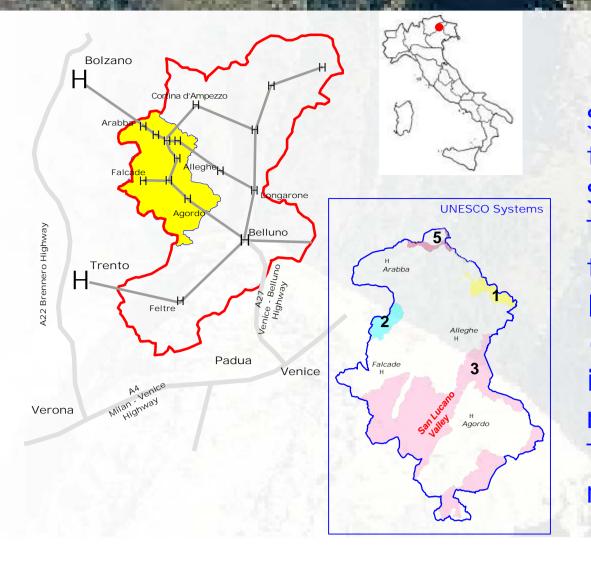


Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto



EUropean Congress on **REgional GEOscientific Cartography** and Information Systems Bologna | Italy june 12th - 15th 2012

Giacom


io Bianc

Adorda



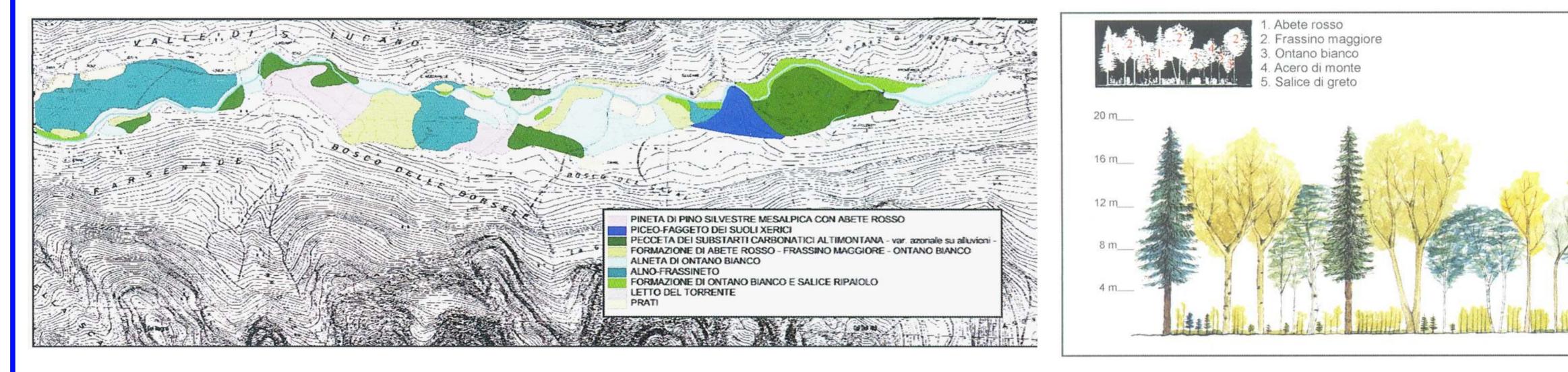
NR - Istituto per la Dinamica

Danilo N runo.testa@idpa.cnr.it



## INTRODUCTION

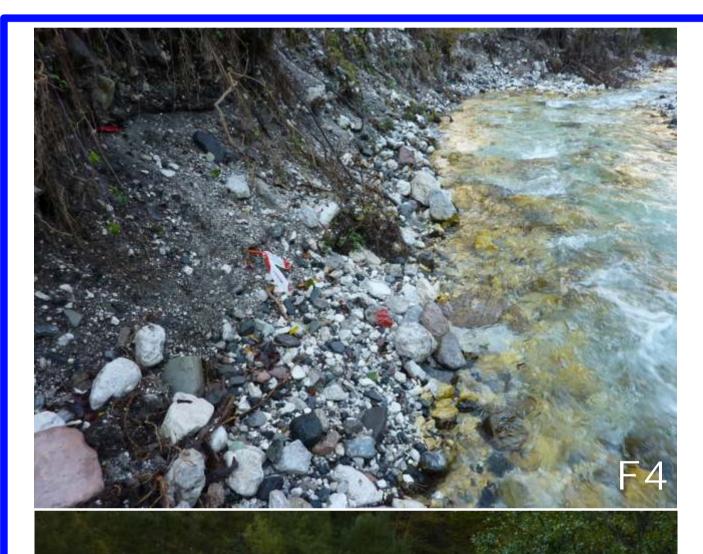
San Lucano Valley (Taibon, Belluno, Italy) is situated in the heart of the Agordine Dolomites, included in the UNESCO System n.3: Pale of San Martino - San Lucano-Belluno Dolomites (Fig. 1).


The valley is a prototype study area for a research project issued from the collaboration among the Dynamics of Environmental Processes Institute (IDPA-CNR-Milano), the Technical Mining Industry Institute (ITIM, Agordo), and the Agordina Mountain Community (CMA), also involving other qualified subjects for environmental and land management (ARPAV; Civil Engineering Treviso).

The project aims to verify the applicability of the methodology referred as Watershed Assessment of River Stability and Sediment

Supply (WARSSS - Rosgen, 2006) in the morphological and geological context of the Alps. The long-term perspective based on longer observations is three fold:

- monitoring trends in fluvial and geomorphic condition over time; expanding the investigation to the adjacent basins and define a "Dolomites physiographic region"


introducing the geomorphologic "Natural Channel Design" (NCD) approach in restoring fluvial mountain environment, without disregarding the natural environment quality preservation.



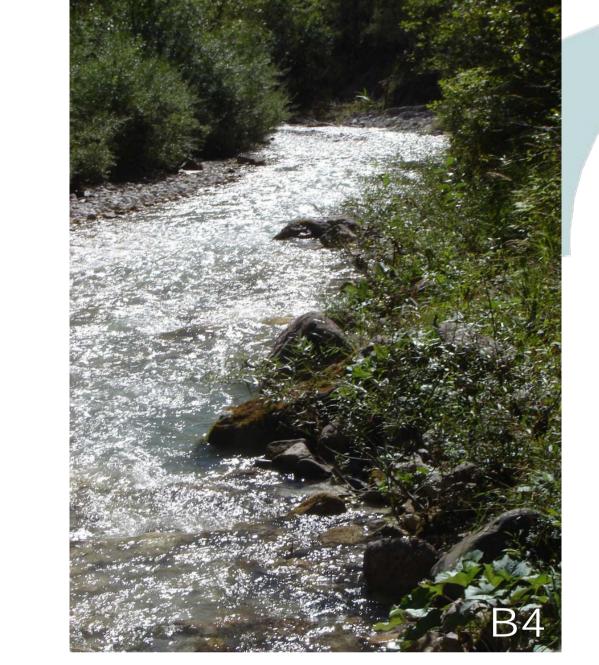
### network

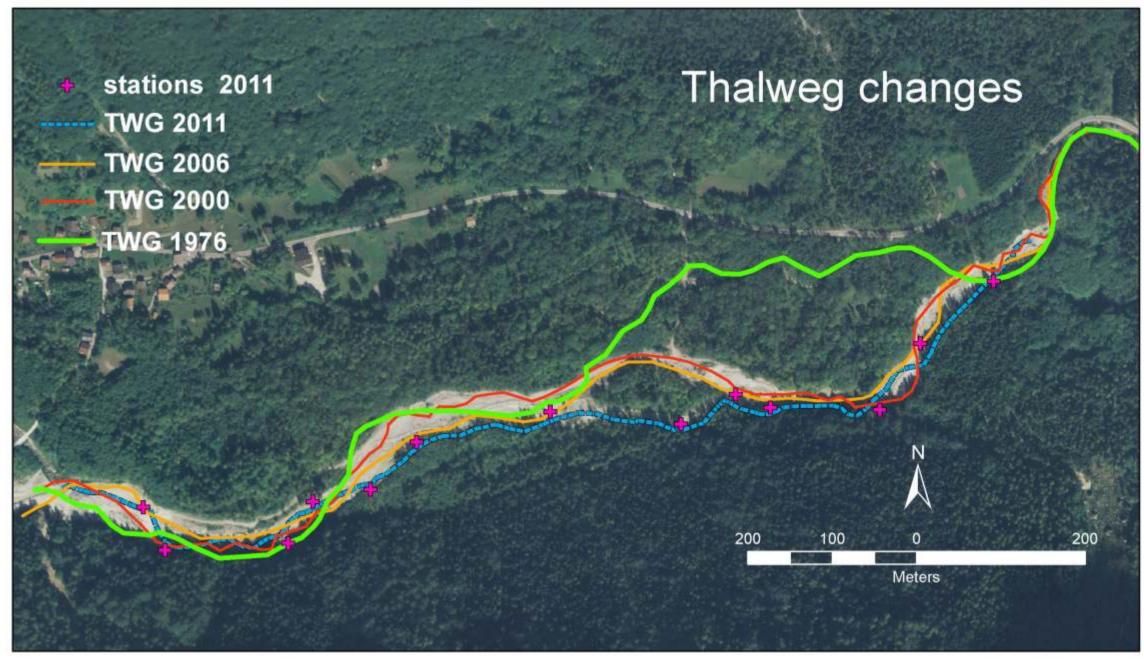
The San Lucano Valley is characterized by extensive riparian forests of high natural interest held by the Community directives. Alnus incana and Fraxinus excelsior dominate, followed by Mountain Maple and Spruce.

A) map types. B) Structure found in a formation. Since the disastrous flood of 1966, significant trees associations were differentiated along the creek and now deserve careful consideration and every possible attention to their stabilization until the next calamity.

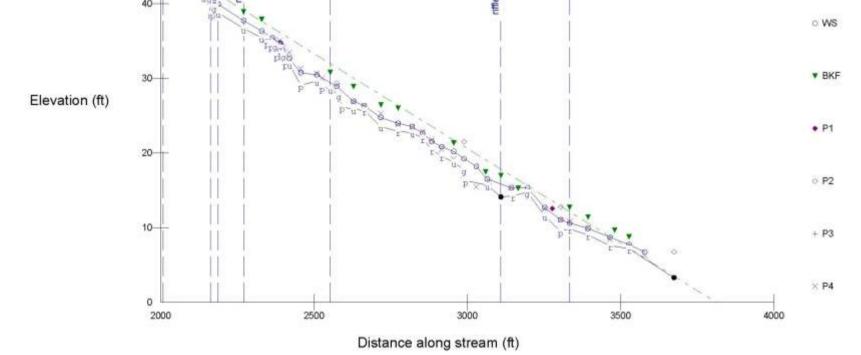


# ACTUAL NCD I N S. LUCANO VALLEY

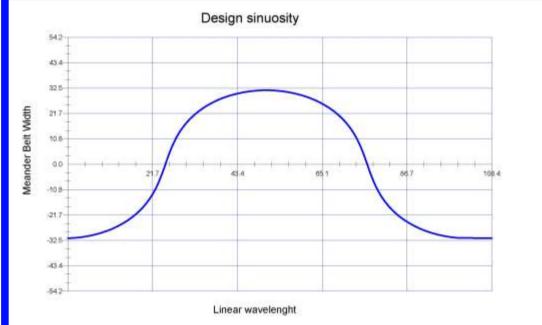

Dinc


20131

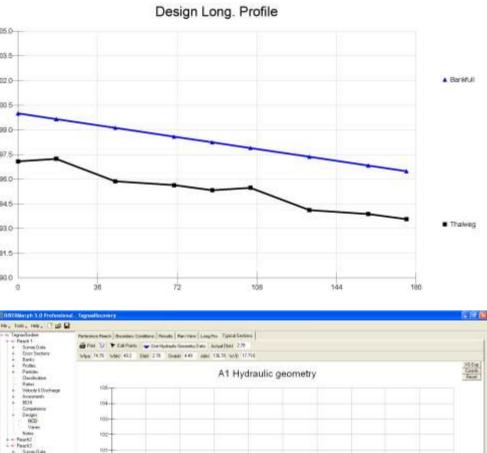
la Sicurez


lluno) 17

Along the upper Tegnas, three segments of the stream with gradient ranging from 2.6% to 1.9%, are easily delimited: a first upstream disturbed reach (F4-type), a second stable (B4-type) reference reach (load transporting), and downwards, an aggraded reach (D4-type) flowing across a gravel deposit two hundred meters thick (Caielli et al. 2011). This area must periodically be quarried, in order to ensure the hydraulic protection of the sideway road, and a simple "V" shape, single channel, is mechanically rebuilt. Despite the good recovering ability shown by the riverside bush, the period elapsing between the removal activities is shorter than the natural process of re-naturalization. The recovered banks are quickly eroded, and the stream regress to a D4-type, becoming impracticable and completely unsuitable for spontaneous fish habitats and woods growth.








Longitudinal Profile Reference reach



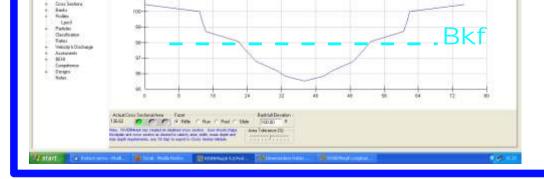




## **METHODS**

The basic principle for geomorphologic "Natural Channel Design (NCD) methodology, is that each natural undisturbed stream is shaped by both geomorphologic and climatic conditions into a physiographic region, then NCD requires surveys of several reference streams in order to understand their "stability" features: the measure of the proportion of a cross section of the bankfull stage is one of the key variables to quantify the morphology of the stream. Understanding the hydro-geometric correct ratios of a stable "reference reach", is the key to be able to design a new long-term stable channel, where you need to restore it.

This paper illustrates the results arising from detailed survey dataset collected in the valley bottom along the Tegnas River from year 2009 to 2011. A series of longitudinal profiles and cross sections, an extensive and diversified particle size analysis along the channel bed, can allow first to classify each reach type on the base of their hydraulics and geomorphologic parameters and then assign the real extent of the bankfull stage.


Bed particle size, width/depth ratio, entrenchment ratio and slope were calculated from field data in order to determine the stream classification as outlined by Rosgen (Rosgen, 1994). The bankfull slope was determined as the average height of bankfull and then used to calculate width, depth and area for each cross section at the bankfull stage.

The flow velocity at the bankfull stage was determined by using Manning's equation where the coefficient n was calculated using the estimation method from survey analysis of particle size (D84), with the approximations of roughness associated to Rosgen classification (Leopold 1994, Rosgen, 1996), and tabular information for different types of bed and banks material Stream classification itself does not attempt to predict the stability of the stream, the stability assessment procedure (in use for over twenty years in USA), documented in the EPA web document WARSSS (Rosgen, 2006), was applied to this case study.

orksheet 5-4. Morphological relations, including dimensionless ratios of river reach sites (Rosgen and Silvey, 200

| 1000                       | ream: Tegnas5ordine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                                                                                   |                                                                                                   | _                                                                               | Location: Reach - Reach3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OŁ                         | bservers: Team3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | Date:                                                                                             | 08/29                                                                                             | /11                                                                             | Valley Type: V Strea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m Type:                                                                                                                           | <b>B</b> 4                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rive                                                                                                            | er Rea                                                                                            | ch Din                                                                                            | nens                                                                            | sion Summary Data1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Riffle Dimensions*.**. *** | Riffle Dimensions* *** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean                                                                                                            | Min                                                                                               | Max                                                                                               |                                                                                 | Riffle Dimensions & Dimensionless Ratios****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                 | Min                                                                                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | Riffle Width (W <sub>bit</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.8                                                                                                            | 32.8                                                                                              | 32.8                                                                                              | ft                                                                              | Riffle Cross-Sectional Area (Apid) (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.82                                                                                                                             | 59.82                                                                                                | 59.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Mean Riffle Depth (d <sub>bit</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83                                                                                                            | 1.83                                                                                              | 1.83                                                                                              | ft                                                                              | Riffle Width/Depth Ratio (W <sub>lot</sub> / d <sub>lot</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.90                                                                                                                             | 17.90                                                                                                | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Maximum Riffle Depth (d <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.95                                                                                                            | 2.95                                                                                              | 2.95                                                                                              | ft                                                                              | Max Riffle Depth to Mean Riffle Depth $(d_{nsc} / d_{Dr})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.612                                                                                                                             | 1.612                                                                                                | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Width of Flood-Prone Area (Wrpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.5                                                                                                            | 49.6                                                                                              | 49.6                                                                                              | ft                                                                              | Entrenchment Ratio (Wrps / Wpsr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.514                                                                                                                             | 1.514                                                                                                | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Riffle Inner Berm Width (Wp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.22                                                                                                            | 4.22                                                                                              | 4.22                                                                                              | ft                                                                              | Riffle Inner Berm Width to Riffle Width (Wb / Wbz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.096                                                                                                                             | 0.096                                                                                                | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Riffle Inner Berm Depth (d <sub>b</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21                                                                                                            | 0.21                                                                                              | 0.21                                                                                              | ft                                                                              | Riffle Inner Berm Depth to Mean Depth (d <sub>it</sub> / d <sub>bid</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.183                                                                                                                             | 0.183                                                                                                | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Riffle Inner Berm Area (A <sub>io</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9                                                                                                             | 0.9                                                                                               | 0.9                                                                                               | ft?                                                                             | Riffle Inner Berm Area to Riffle Area (A <sub>6</sub> / A <sub>0d</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.018                                                                                                                             | 0.018                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Riffle Inner Berm W/D Ratio (W <sub>b</sub> / d <sub>b</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.8                                                                                                            | 19.8                                                                                              | 19.8                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | Pool Dimensions* *** ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ol Dimensions* *** *** Mean Min Max Pool Dimensions & Dimensionless Ratios**                                    |                                                                                                   |                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | Min                                                                                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | Pool Width (W <sub>SHp</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.6                                                                                                            | 48.6                                                                                              | 48.6                                                                                              | ft                                                                              | Pool Width to Riffle Width (Wpdg/ Wpd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   | 1.482                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| :                          | Mean Pool Depth (d <sub>orp</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.31                                                                                                            | 1.31                                                                                              | 1.31                                                                                              | ft                                                                              | Mean Pool Depth to Mean Riffle Depth (d <sub>bitp</sub> / d <sub>bit</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.716                                                                                                                             | 0.716                                                                                                | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                          | Pool Cross-Sectional Area (A <sub>ptp</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63.5                                                                                                            | 63.5                                                                                              | 63.5                                                                                              | ft.                                                                             | Pool Area to Riffle Area (A <sub>toto</sub> / A <sub>tot</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.061                                                                                                                             | 1.061                                                                                                | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ions                       | Maximum Pool Depth (d <sub>map</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.65                                                                                                            | 2.65                                                                                              | 2.65                                                                                              | ft                                                                              | Max Pool Depth to Mean Riffle Depth (dmap / dbid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.448                                                                                                                             | 1.448                                                                                                | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dimensions*                | Pool Inner Berm Width (W <sub>Ep</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.6                                                                                                            | 19.6                                                                                              | 19.6                                                                                              | ft.                                                                             | Pool Inner Berm Width to Pool Width (Wip / Wistp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.403                                                                                                                             | 0.403                                                                                                | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dir                        | Pool Inner Berm Depth (d <sub>to</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.49                                                                                                            | 0.49                                                                                              | 0.49                                                                                              | ft                                                                              | Pool Inner Berm Depth to Pool Depth (dpp / dpirp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.374                                                                                                                             | 0.374                                                                                                | 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pool                       | Pool Inner Berm Area (App)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.59                                                                                                            | 9.59                                                                                              | 9.59                                                                                              | ft2                                                                             | Pool Inner Berm Area to Pool Area (Aup / Aun)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.151                                                                                                                             | 0.151                                                                                                | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Point Bar Slope (Sco)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                           |                                                                                                   | 0.000                                                                                             | -                                                                               | Pool Inner Berm Width/Depth Ratio (W <sub>to</sub> / d <sub>to</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ******                                                                                                                            |                                                                                                      | ++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _                          | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                                   | <u> </u>                                                                                          | -                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | Run Dimensions*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean<br>27.8                                                                                                    | Min 27.8                                                                                          | Max 27.8                                                                                          | le.                                                                             | Run Dimensionless Ratios****<br>Run Width to Riffle Width (Wpdr / Wpdr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean<br>0.848                                                                                                                     | Min<br>0.848                                                                                         | Max<br>0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ons                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | -                                                                                                 |                                                                                                   | -                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                 |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ansi                       | Mean Run Depth (d <sub>bin</sub> )<br>Run Cross-Sectional Area (A <sub>bin</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                             | 1.5                                                                                               | 1.5                                                                                               | -                                                                               | Mean Run Depth to Mean Riffle Depth (d <sub>outr</sub> / d <sub>out</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                 | 0.820                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dime                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41.8                                                                                                            | 41.8                                                                                              | 41.8                                                                                              | -                                                                               | Run Area to Riffle Area (A <sub>ost</sub> , / A <sub>ost</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.699                                                                                                                             | 0.699                                                                                                | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ŭ.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                            | 0.00                                                                                              | 0.00                                                                                              |                                                                                 | Max Run Depth to Mean Riffle Depth (d <sub>main</sub> / d <sub>bid</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 404                                                                                                                             | 4 404                                                                                                | 4 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| un Dimensions*             | Maximum Run Depth (d <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.68                                                                                                            | 2.68                                                                                              | 2.68                                                                                              | -                                                                               | e entre entre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.464                                                                                                                             | 1.464                                                                                                | 1.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Run Dime                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.68<br>18.5                                                                                                    | 2.68<br>18.5                                                                                      | -                                                                                                 | -                                                                               | Contrast Contrast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.464                                                                                                                             | 1.464                                                                                                | 1.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | Maximum Run Depth (d <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                               | -                                                                                                 | -                                                                                                 | -                                                                               | Glide Dimensions & Dimensionless Ratios****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                              | Min                                                                                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bidt</sub> / d <sub>bidt</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.5                                                                                                            | 18.5                                                                                              | 18.5                                                                                              | ft                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean                                                                                                                              |                                                                                                      | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Run                        | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bert</sub> / d <sub>min</sub> )<br>Glide Dimensions*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.5<br>Mean                                                                                                    | 18.5<br>Min                                                                                       | 18.5<br>Max<br>25.3                                                                               | ft<br>ft                                                                        | Glide Dimensions & Dimensionless Ratios****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean<br>0.773                                                                                                                     | Min                                                                                                  | Max<br>0.77:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Run                        | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bith</sub> / d <sub>bith</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>bitp</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.5<br>Mean<br>25.3                                                                                            | 18.5<br>Min<br>25.3                                                                               | 18.5<br>Max<br>25.3<br>1.24                                                                       | ft<br>ft                                                                        | Glide Dimensions & Dimensionless Ratios****<br>Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>old</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean<br>0.773<br>0.678                                                                                                            | Min<br>0.773                                                                                         | Max<br>0.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>berr</sub> / d <sub>uidt</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>berg</sub> )<br>Mean Glide Depth (d <sub>todg</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.5<br>Mean<br>25.3<br>1.24                                                                                    | 18.5<br>Min<br>25.3<br>1.24                                                                       | 18.5<br>Max<br>25.3<br>1.24                                                                       | ft<br>ft<br>ft                                                                  | Glide Dimensions & Dimensionless Ratios <sup>exery</sup><br>Glide Width to Riffle Width (W <sub>bitg</sub> / W <sub>bit</sub> )<br>Mean Glide Depth to Mean Riffle Depth (d <sub>bitg</sub> / d <sub>bit</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean<br>0.773<br>0.678<br>0.524                                                                                                   | Min<br>0.773<br>0.678                                                                                | Max<br>0.773<br>0.671<br>0.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dimensions*                | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bith</sub> / d <sub>bith</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>bitp</sub> )<br>Mean Glide Depth (d <sub>bitp</sub> )<br>Glide Cross-Sectional Area (A <sub>bitp</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.5<br>Mean<br>25.3<br>1.24<br>31.4                                                                            | 18.5<br>Min<br>25.3<br>1.24<br>31.4                                                               | 18.5<br>Max<br>25.3<br>1.24<br>31.4                                                               | ft<br>ft<br>ft<br>ft                                                            | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>bidg</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>bidg</sub> / d <sub>bid</sub> )   Glide Area to Riffle Area (A <sub>bidg</sub> / A <sub>bid</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean<br>0.773<br>0.678<br>0.524<br>1.202                                                                                          | Min<br>0.773<br>0.678<br>0.524                                                                       | Max<br>0.777<br>0.671<br>0.524<br>1.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dimensions*                | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bith</sub> / d <sub>bith</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>bitp</sub> )<br>Mean Glide Depth (d <sub>bitg</sub> )<br>Glide Cross-Sectional Area (A <sub>tistp</sub> )<br>Maximum Glide Depth (d <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                        | 18.5<br>Mean<br>25.3<br>1.24<br>31.4<br>2.2                                                                     | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2                                                        | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2                                                        | ft<br>ft<br>ft<br>ft/ft                                                         | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>bit</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>bidg</sub> / d <sub>bid</sub> )   Glide Area to Riffle Area (A <sub>bidg</sub> / A <sub>bid</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>mag</sub> / d <sub>bid</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####                                                                                 | Min<br>0.773<br>0.678<br>0.524<br>1.202                                                              | Max<br>0.773<br>0.671<br>0.524<br>1.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tensions* Run              | Maximum Run Depth (d <sub>maxr</sub> )<br>Run Width/Depth Ratio (W <sub>berr</sub> / d <sub>betr</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>btrp</sub> )<br>Mean Glide Depth (d <sub>betrp</sub> )<br>Glide Cross-Sectional Area (A <sub>terrp</sub> )<br>Maximum Glide Depth (d <sub>maxp</sub> )<br>Glide Width/Depth Ratio (W <sub>betrp</sub> / d <sub>betrp</sub> )                                                                                                                                                                                                                                                                                               | 18.5     Mean     25.3     1.24     31.4     2.2     20.4                                                       | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4                                                | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21                                        | ft<br>ft<br>ft<br>ft<br>ft/ft<br>ft                                             | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bitg</sub> / W <sub>bit</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>bitg</sub> / d <sub>bit</sub> )   Glide Area to Riffle Area (A <sub>bitg</sub> / A <sub>bit</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>mag</sub> / d <sub>bit</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>big</sub> / d <sub>big</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246                                                                        | Min<br>0.773<br>0.678<br>0.524<br>1.202                                                              | Max<br>0.773<br>0.671<br>0.524<br>1.203<br>#####<br>0.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Dimensions*                | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bidt</sub> / d <sub>bidt</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>bidg</sub> )<br>Mean Glide Depth (d <sub>max</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Width/Depth Ratio (W <sub>bidg</sub> / d <sub>bidg</sub> )<br>Glide Inner Berm Width (W <sub>big</sub> )                                                                                                                                                                                                                                                | 18.5     Mean     25.3     1.24     31.4     2.2     20.4     6.21                                              | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21                                        | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24                                | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                                          | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>0.65</sub> / W <sub>0.67</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>0.65</sub> / d <sub>0.67</sub> )   Glide Area to Riffle Area (A <sub>1660</sub> / A <sub>0.67</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>max</sub> / d <sub>0.67</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>0.69</sub> / d <sub>0.67</sub> )   Glide Inner Berm Width to Glide Width (W <sub>0.69</sub> /W <sub>0.679</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194                                                               | Min<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246                                            | Max<br>0.777<br>0.671<br>0.524<br>1.202<br>#####<br>0.244<br>0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dimensions*                | Maximum Run Depth (d <sub>max</sub> )   Run Width/Depth Ratio (W <sub>bidt</sub> / d <sub>bidt</sub> )   Glide Dimensions*   Glide Width (W <sub>bidt</sub> )   Mean Glide Depth (d <sub>bidt</sub> )   Glide Cross-Sectional Area (A <sub>bidt</sub> )   Glide Width/Depth Ratio (W <sub>bidg</sub> / d <sub>bidt</sub> )   Glide Inner Berm Width (W <sub>bidg</sub> )   Glide Inner Berm Depth (d <sub>bidg</sub> )   Glide Inner Berm Area (A <sub>bid</sub> )                                                                                                                                                                                                              | 18.5     Mean     25.3     1.24     31.4     2.2     20.4     6.21     0.24     1.49                            | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49                        | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49                        | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                                          | Office Dimensions & Dimensionless Ratios****     Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>bid</sub> )     Mean Glide Depth to Mean Riffle Depth (d <sub>bidg</sub> / d <sub>bid</sub> )     Glide Area to Riffle Area (A <sub>bidg</sub> / A <sub>bid</sub> )     Max Glide Depth to Mean Riffle Depth (d <sub>mag</sub> / d <sub>bid</sub> )     Glide Inner Berm Width/Depth Ratio (W <sub>bid</sub> / d <sub>bid</sub> )     Glide Inner Berm Width to Glide Width (W <sub>bid</sub> / d <sub>bid</sub> )     Glide Inner Berm Weith to Glide Depth (d <sub>bid</sub> / d <sub>bid</sub> )     Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / A <sub>bidg</sub> )                                                                                                                                                                                                                                                                                                                           | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048                                                      | Min<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048                          | Max<br>0.777<br>0.671<br>0.524<br>1.202<br>#####<br>0.244<br>0.244<br>0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dimensions*                | Maximum Run Depth (d <sub>max</sub> )<br>Run Width/Depth Ratio (W <sub>bidt</sub> / d <sub>bidt</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>bidg</sub> )<br>Mean Glide Depth (d <sub>bidg</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Undth/Depth Ratio (W <sub>bidg</sub> / d <sub>bidg</sub> )<br>Glide Inner Berm Width (W <sub>big</sub> )<br>Glide Inner Berm Depth (d <sub>big</sub> )<br>Glide Inner Berm Area (A <sub>big</sub> )<br>Step Dimensions**                                                                            | 18.5     Mean     25.3     1.24     31.4     2.2     20.4     6.21     0.24     1.49     Mean                   | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Min                 | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Max                 | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                        | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>bid</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>bidg</sub> / d <sub>bid</sub> )   Glide Area to Riffle Area (A <sub>bidg</sub> / A <sub>bid</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>riftle</sub> / d <sub>bid</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>bidg</sub> / d <sub>bid</sub> )   Glide Inner Berm Width to Glide Width (W <sub>bidg</sub> / d <sub>bid</sub> )   Glide Inner Berm Width to Glide Depth (d <sub>bid</sub> / d <sub>bid</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / A <sub>bidg</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / A <sub>bidg</sub> )   Step Dimensionless Ratios****                                                                                                                                                                                                                        | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Mean                                              | Min<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Min                   | Max<br>0.773<br>0.671<br>0.524<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1. |
| Glide Dimensions* [ Run    | Maximum Run Depth (d <sub>maxt</sub> )   Run Width/Depth Ratio (W <sub>bith</sub> / d <sub>bith</sub> )   Glide Dimensions*   Glide Width (W <sub>bitp</sub> )   Mean Glide Depth (d <sub>bitp</sub> )   Glide Cross-Sectional Area (A <sub>tartp</sub> )   Glide Width/Depth Ratio (W <sub>bitp</sub> / d <sub>bitp</sub> )   Glide Cross-Sectional Area (A <sub>tartp</sub> )   Glide Width/Depth Ratio (W <sub>bitp</sub> / d <sub>bitp</sub> )   Glide Inner Berm Width (W <sub>tap</sub> )   Glide Inner Berm Depth (d <sub>bip</sub> )   Glide Inner Berm Area (A <sub>tap</sub> )   Step Dimensions**   Step Width (W <sub>bidb</sub> )                                  | 18.5     Mean     25.3     1.24     31.4     2.2     20.4     6.21     0.24     1.49     Mean     47.8          | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Min<br>47.8         | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Max<br>47.8         | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11      | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>bid</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>bidg</sub> / d <sub>bid</sub> )   Glide Area to Riffle Area (A <sub>bidg</sub> / A <sub>bid</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>midg</sub> / d <sub>bid</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>big</sub> / d <sub>bid</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>big</sub> / d <sub>bid</sub> )   Glide Inner Berm Width to Glide Depth (d <sub>bidg</sub> / d <sub>bidg</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / d <sub>bidg</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / d <sub>bidg</sub> )   Step Dimensionless Ratios****   Step Width to Riffle Width (W <sub>bidfl</sub> / W <sub>bidfl</sub> )                                                                                                                                                     | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Mean<br>1.459                                     | Min<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Min<br>1.459          | Max<br>0.773<br>0.671<br>0.524<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1.203<br>1. |
| Glide Dimensions* [ Run    | Maximum Run Depth (d <sub>maxr</sub> )<br>Run Width/Depth Ratio (W <sub>bidt</sub> / d <sub>bidt</sub> )<br>Glide Dimensions*<br>Glide Width (W <sub>bidg</sub> )<br>Mean Glide Depth (d <sub>max</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Cross-Sectional Area (A <sub>bidg</sub> )<br>Glide Undth/Depth Ratio (W <sub>bidg</sub> / d <sub>bidg</sub> )<br>Glide Inner Berm Width (W <sub>bidg</sub> )<br>Glide Inner Berm Area (A <sub>big</sub> )<br>Glide Inner Berm Area (A <sub>big</sub> )<br>Step Dimensions**<br>Step Width (W <sub>bidg</sub> )<br>Mean Step Depth (d <sub>bidg</sub> ) | 18.5     Mean     25.3     1.24     31.4     2.2     20.4     6.21     0.24     1.49     Mean     47.8     1.48 | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Min<br>47.8<br>1.48 | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Max<br>47.8<br>1.48 | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                        | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bitg</sub> / W <sub>bit</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>mitg</sub> / d <sub>bit</sub> )   Glide Area to Riffle Area (A <sub>bitg</sub> / A <sub>bit</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>mitg</sub> / d <sub>bit</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>hig</sub> / d <sub>bit</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>hig</sub> / d <sub>bit</sub> )   Glide Inner Berm Width to Glide Depth (d <sub>bit</sub> / d <sub>bit</sub> )   Glide Inner Berm Depth to Glide Depth (d <sub>bit</sub> / d <sub>bit</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bit</sub> / A <sub>bitg</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bit</sub> / A <sub>bitg</sub> )   Step Dimensionless Ratios****   Step Width to Riffle Width (W <sub>bitfl</sub> / W <sub>bit</sub> )   Mean Step Depth to Riffle Depth (d <sub>bitfl</sub> / d <sub>bit</sub> ) | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Mean<br>1.459<br>0.809                            | Min<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Min<br>1.459<br>0.809 | Max<br>0,77:<br>0,671<br>0,524<br>1,202<br>#####<br>0,244<br>0,194<br>0,194<br>0,044<br>Nax<br>1,455<br>0,801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dimensions*                | Maximum Run Depth (d <sub>maxt</sub> )   Run Width/Depth Ratio (W <sub>bith</sub> / d <sub>bith</sub> )   Glide Dimensions*   Glide Width (W <sub>bitp</sub> )   Mean Glide Depth (d <sub>bitp</sub> )   Glide Cross-Sectional Area (A <sub>tartp</sub> )   Glide Width/Depth Ratio (W <sub>bitp</sub> / d <sub>bitp</sub> )   Glide Cross-Sectional Area (A <sub>tartp</sub> )   Glide Width/Depth Ratio (W <sub>bitp</sub> / d <sub>bitp</sub> )   Glide Inner Berm Width (W <sub>tap</sub> )   Glide Inner Berm Depth (d <sub>bip</sub> )   Glide Inner Berm Area (A <sub>tap</sub> )   Step Dimensions**   Step Width (W <sub>bidb</sub> )                                  | 18.5     Mean     25.3     1.24     31.4     2.2     20.4     6.21     0.24     1.49     Mean     47.8          | 18.5<br>Min<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Min<br>47.8         | 18.5<br>Max<br>25.3<br>1.24<br>31.4<br>2.2<br>20.4<br>6.21<br>0.24<br>1.49<br>Max<br>47.8         | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>f | Glide Dimensions & Dimensionless Ratios****   Glide Width to Riffle Width (W <sub>bidg</sub> / W <sub>bid</sub> )   Mean Glide Depth to Mean Riffle Depth (d <sub>bidg</sub> / d <sub>bid</sub> )   Glide Area to Riffle Area (A <sub>bidg</sub> / A <sub>bid</sub> )   Max Glide Depth to Mean Riffle Depth (d <sub>midg</sub> / d <sub>bid</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>big</sub> / d <sub>bid</sub> )   Glide Inner Berm Width/Depth Ratio (W <sub>big</sub> / d <sub>bid</sub> )   Glide Inner Berm Width to Glide Depth (d <sub>bidg</sub> / d <sub>bidg</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / d <sub>bidg</sub> )   Glide Inner Berm Area to Glide Area (A <sub>bidg</sub> / d <sub>bidg</sub> )   Step Dimensionless Ratios****   Step Width to Riffle Width (W <sub>bidfl</sub> / W <sub>bidfl</sub> )                                                                                                                                                     | Mean<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.246<br>0.194<br>0.048<br>Mean<br>1.459<br>0.809<br>1.182 | Min<br>0.773<br>0.678<br>0.524<br>1.202<br>#####<br>0.246<br>0.194<br>0.048<br>Min<br>1.459          | Max<br>0,777<br>0,671<br>0,524<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1,202<br>1, |

| ye                | en, 2008).                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                |                               |                                                                                |                                  |                                                         |                     |                                  |                       |         |                 |       |
|-------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------|---------------------|----------------------------------|-----------------------|---------|-----------------|-------|
| -                 | eam: Tegnas5ordine                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                |                               | 55520                                                                          | ocation: Re                      | ach - Re                                                | ach3                |                                  |                       |         |                 |       |
| Ob                | servers: Team3                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                | 08/29                         |                                                                                |                                  | /alley Type:                                            | V                   |                                  | Stream                | m Type: | B4              | _     |
| 2                 | River Reach Summary Data2                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                |                               |                                                                                |                                  |                                                         |                     |                                  |                       |         |                 |       |
| Hydraulics        | Streamflow: Estimated Mean Velocity at Bankfull Stage (update) 7.906 ft/sec Estimation Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                |                               |                                                                                |                                  |                                                         | 3                   |                                  |                       |         |                 |       |
| Ě                 | Streamflow: Estimated Discharge at Bankfull Stage ( $Q_{tot})$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                |                               | 458.62                                                                         | 27 cfs                           | Drain                                                   | nage Area           | a                                | 8                     | .7      | mi <sup>2</sup> |       |
|                   | Geometry                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in Max Dimensionless Geometry Ratios |                                                                                                                |                               |                                                                                |                                  |                                                         |                     |                                  | Mean                  | Min     | Max             |       |
| ٦                 | Linear Wavelength $(\lambda)$                                                                 | Mean<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87                                   | T. COLORADO                                                                                                    |                               |                                                                                |                                  |                                                         |                     |                                  |                       | 2.778   |                 | -     |
|                   | Stream Meander Length (Ln)                                                                    | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                   | 115                                                                                                            | ft                            | Stream                                                                         | Meander Le                       | ength Rati                                              | o (L <sub>n</sub> / | W <sub>or</sub> )                |                       | 2.503   | 1.526           | 3.51  |
| ern.              | Radius of Curvature (R <sub>c</sub> )                                                         | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                   | 118                                                                                                            | ft                            | Radius                                                                         | of Curvatur                      | e to Riffle                                             | Width               | (R <sub>c</sub> /W <sub>ck</sub> | ð                     | 1.679   | 0.549           | 3.60  |
| Pattern           | Belt Width (W <sub>tit</sub> )                                                                | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                   | 128                                                                                                            | ft                            | Meander Width Ratio (W <sub>bit</sub> / W <sub>bit</sub> )                     |                                  |                                                         |                     |                                  |                       | 2.198   | 1.007           | 3.90  |
| Inel              | Arc Length (L <sub>2</sub> )                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                   | ft Arc Length to Riffle Width (L <sub>a</sub> / W <sub>att</sub> )                                             |                               |                                                                                |                                  |                                                         |                     |                                  | 2.106                 | 0.763   | 2.71            |       |
| Channel           | Riffle Length (L,)                                                                            | file Length (L,) 131 80.9 193 ft Riffle Length to Riffle Width (L,/W <sub>ind</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                                                                                                |                               |                                                                                |                                  |                                                         | 4.012               | 2.469                            | 5.87                  |         |                 |       |
|                   | Individual Pool Length (Lp)                                                                   | 57.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.9                                 | 88                                                                                                             | ft                            | Individu                                                                       | al Pool Len                      | 1.753                                                   | 0.484               | 2.68                             |                       |         |                 |       |
|                   | Pool to Pool Spacing (Ps)                                                                     | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                                  | 298                                                                                                            | n                             | Pool to Pool Spacing to Riffle Width (P1/Wbir)                                 |                                  |                                                         |                     |                                  | ut)                   | 5.662   | 3.375           | 9.05  |
|                   |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                |                               |                                                                                |                                  |                                                         |                     | -                                | 1                     |         |                 |       |
|                   |                                                                                               | 0325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft/ft                                | -                                                                                                              | -                             |                                                                                | e Slope (S)                      |                                                         | .025                | ft/ft                            | Sinuosity (           |         |                 | 1.2   |
|                   | Stream Length (SL)                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft                                   | Valley                                                                                                         | ey Length (VL) 0 ft Sin       |                                                                                |                                  |                                                         |                     |                                  | Sinuosity (           |         | a second d      |       |
|                   | Low Bank Height star<br>(LBH) end                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft<br>ft                             |                                                                                                                | Max De<br>(d <sub>max</sub> ) | 1.00                                                                           |                                  |                                                         |                     |                                  |                       |         | start<br>end    |       |
|                   | Facet Slopes                                                                                  | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                    | The second s |                               |                                                                                | Dimensionless Facet Slope Ratios |                                                         |                     |                                  |                       |         | Min             | Ma    |
|                   | Riffle Slope (Srit)                                                                           | and the second s | 0.020                                | -                                                                                                              | -                             | Riffle Slope to Average Water Surface Slope (S <sub>rt</sub> / S)              |                                  |                                                         |                     |                                  |                       | 0.880   |                 | -     |
| Profile           | Run Slope (S <sub>run</sub> )                                                                 | - Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.031                                | -                                                                                                              | -                             | -                                                                              |                                  | e to Average Water Surface Slope (S <sub>run</sub> / S) |                     |                                  |                       |         | 1.240           |       |
|                   | Pool Slope (Sp)                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                |                                                                                                                | -                             | Pool Slope to Average Water Surface Slope (Sp / S)                             |                                  |                                                         |                     |                                  |                       | 0.460   |                 | 0.84  |
| Channel           | Glide Slope (Sg)                                                                              | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003                                | 0.019                                                                                                          | ft/ft                         | Glide Sl                                                                       | lope to Aver                     | rage Wate                                               | r Surfa             | ice Slope                        | (S <sub>g</sub> /S)   | 0.444   | 0.105           | 0.74  |
| Cha               | Step Slope (S <sub>6</sub> )                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                | 0.000                                                                                                          | ft/ft                         | Step Slope to Average Water Surface Slope (S <sub>5</sub> / S)                 |                                  |                                                         |                     |                                  |                       | 0.000   | 0.000           | 0.00  |
|                   | Max Depths <sup>a</sup>                                                                       | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                    | Max                                                                                                            |                               |                                                                                | Dimensionless Depth Ratios       |                                                         |                     |                                  |                       |         | Min             | Ma    |
|                   | Max Riffle Depth (d <sub>mart</sub> )                                                         | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                 | 3.5                                                                                                            | -                             | Max Riffle Depth to Mean Riffle Depth (d <sub>maxit</sub> / d <sub>ott</sub> ) |                                  |                                                         |                     |                                  |                       | 1.37    | 0.639           |       |
| - 1               | Max Run Depth (d <sub>manun</sub> )                                                           | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.83                                 |                                                                                                                | -                             | Max Run Depth to Mean Riffle Depth (d <sub>menun</sub> / d <sub>bit</sub> )    |                                  |                                                         |                     |                                  |                       | 1.85    | 1.546           | 2.3   |
|                   | Max Pool Depth (d <sub>map</sub> )                                                            | 3.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.94                                 | 4 5.18 ft Max Pool Depth to Mean Riffle Depth (d <sub>map</sub> / d <sub>tit</sub> )                           |                               |                                                                                |                                  |                                                         |                     | / d <sub>tet</sub> )             | 2.11                  | 1.607   | -               |       |
|                   | Max Glide Depth (dmag)                                                                        | 2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                 | 3.46                                                                                                           | ft                            | Max Glin                                                                       | de Depth to                      | Mean Rif                                                | fle Dep             | ith (d <sub>masp</sub>           | / d <sub>tist</sub> ) | 1.2     | 0.47            | 1.8   |
|                   | Max Step Depth (d <sub>ener</sub> )                                                           | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05                                 | 3.53                                                                                                           | ft                            | Max Ste                                                                        | ep Depth to                      | Mean Riff                                               | le Depl             | th (d <sub>mass</sub> /          | ( d <sub>tist</sub> ) | 1.16    | 0.574           | 1.9   |
|                   | Re                                                                                            | each <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rif                                  | ffle <sup>c</sup>                                                                                              |                               | Bar                                                                            |                                  | Reach <sup>b</sup>                                      | F                   | Riffle <sup>c</sup>              | Bar                   | Protru  | usion He        | eight |
| 0                 | % Silt/Clay 5                                                                                 | 5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                                                |                               | 0                                                                              | D <sub>10</sub>                  | 15.43                                                   |                     |                                  | 0                     | 8       |                 | mm    |
| eria              | % Sand                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                                                | 20.69                         |                                                                                | D <sub>D5</sub>                  | 31.25                                                   |                     |                                  | 6.21                  |         |                 | mm    |
| Mat               | % Gravel 61                                                                                   | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                                                | 66                            | 6.01                                                                           | D <sub>S0</sub>                  | 49.75                                                   |                     |                                  | 11.64                 |         |                 | mm    |
| Inel              | % Cobble 18                                                                                   | 9.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                                                | 1                             | 3.3                                                                            | D <sub>B4</sub>                  | 227.11                                                  | 1                   |                                  | 46.06                 | 18      | 3               | mm    |
| Channel Materials | % Boulder 13                                                                                  | 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                                                |                               | 0                                                                              | Dies                             | 340.82                                                  | 133.17              |                                  |                       |         |                 | mm    |
| 0                 | % Bedrock                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                                                | 1                             | 0                                                                              | Dim                              | D <sub>100</sub> 511.99                                 |                     |                                  | 205                   | 1       |                 | mm    |



Copyright © 2009 Wildland Hydrolog

ARSSS page 5

# **RESULTS AND CONCLUSIONS**

Comparing low-flow discharge data with local precipitations time series, and relating them with some surrounding watershed discharges, we can assume that the bankfull flow magnitude calculated for the stream is a realistic value. Then, without specific curves for alpine region, we can adopt the empirical Rosgen Colorado dataset and their relationships to evaluate several design solutions when you plan to restore natural channels (Rosgen, 2007) with a geomorphologic approach.

Decreasing sediment supply, also coming from side headwaters, and resettle a more confined C4 instead of D4-type, may be a useful approach for restoring plans in order to improve riverbed re-naturalization and natural quality, in a next future. Illustrated here are some suggestions to control the erosion-transport-deposition process with longlived, natural solutions, in order to stabilize the stream riverbed and their banks. In compliance with one of the highest environmental value areas of the Dolomite region, authors believe that an effort to make a stable and controlled balance between erosion and deposition is a good way to preserve the greatest heritage of the man/nature equilibrium.

2006 D4-type existing channel 2012 C4-type channel C4 Flooding 2006 100 50

Hypothetical Recovery Design

2000 channel restoration

ARPAV (2001) Progetto e realizzazione a cura del Centro Valanghe di Arabba, 2001, Studio dei 15 Biotopi in area Dolomitica. Programma Comunitario "Leader II", Duck Edizioni CALELLI G., de FRANCO R. (2011). Echi sismici nella Valle di San Lucano. Atti del convegno: L'armonia fra uomo e natura nelle Valli Dolomitiche. 12-13 November 2010 – Agordo, 113-130 LEOPOLD, L. B., (1994). A View of the River. First Harvard University Press. Cambridge, MA.

ROSGEN D.L. (1994). A classification of natural rivers. Catena 22: 166-199.

ROSGEN D. L. (2006). Watershed Assessment of River Stability and Sediment Supply (WARSSS) 2nd Edition. Wildland Hydrology, Pagosa Spring, CO. 648 pp.

ROSGEN D. L. (2007). Chapter 11 In J. Bernard, J.F. Fripp & K.R. Robinson (Eds.), Part 654 Stream Restoration Design National Engineering Handbook (210-VI-NEH). Washington, D.C. USDA Natural Res. Cons. Service.

TESTA B., ALDIGHIERI A., (2011). Geomorfologia fluviale in Valle di San Lucano: il Progetto Tegnas. Atti del convegno: L'armonia fra uomo e natura nelle Valli Dolomitiche. 12-13 novembre 2010 – Agordo, 83-112.