Present-day kinematic pattern of the Northern - Central Italy from GPS measurements Cenni N. ${ }^{(a)}$, Baldi P. ${ }^{(b)}$, Mantovani E. ${ }^{(a)}$, Viti M. ${ }^{(a)}$, Babbucci D. ${ }^{(a)}$, Tamburelli C. ${ }^{(a)}$ and Bacchetti M. ${ }^{(b)}$
(a) Dipartimento di Scienze della Terra - Università degli Studi di Siena. (b) Dipartimento di Fisica - Università degli Studi di Bologna.

Introduction
region may plausibly and coherently be explained as an effect of the convergen ce of the confining plates, as argued by Mantovani et al. (2009a) and Viti et al.
(2011). In response to the motion of ffrica and the Anatoian-Agean system with
.
 This plate kinematics has considerably influenced the tectonics of the Apennine
belt, siniee the outer sector of this chain constituted by the Molis-Sanio (MS)
units the eastern part of the Lazio-Abuzzi carbonate plattorm (ELA) the nits, the eastern part of the Lazio-Abruzzi carbonate platarm (ELA), the
Romagna-Marche-Ubria (RMU) and the Toscana-Emilia (TE) units, being stresFig. 2). The outward migration of of the escaping wedges has causered extensional outormation along their inner margin and compressional deformation along the
outer fronts (Fig. 2). Considering the offsets of the thrust fauts generated in the
Pliocene evolutionary phase and cut by younger normal faults, as evidenced Pliocene evolutionary phase and cut by younger normal faults, as evidenced by
he seismogeological section CROP-03 (Finetti et al., 2005), one can tentatively estimate the average long term migration rate of the RMU wedge during the Qua-
lernary. This analysis suggests a velocity of $3-5 \mathrm{~mm} / \mathrm{yr}$ (Mantovani et al., 2009b) ic zones and subsidence of basins. The uopitity parteracterized by uplift of oroge plifdentation of the Adriatic plate is the main driving mechanism. The general liocudinal shortening of this belt. The Po basin is characterized by the
Plicene-Quaternary sedimentary sequence which is up to 8 km thick along the southern edge of the Plain, at the morrhological boundary with the Apennines.
Active thrusts, related to tectonics in the Apegnines, are buried beneath the QuaBy considering stratigraphic data provided by industrial wells, the long term sub-
sidence rate due to ground settlement in the Po valley has been estimated in The main cause of subsidence in the Po plain area is related to anthropogenic activities. In the second half of the 20th century, the increase in economic activities
in the region and the consequent pumping water and gas from undergroun
and near the Bologna city. In recent times, after a stricict regulation of this phenome-
non, subsidence rates have considerably decreased, now ranging between few m / yr and about $10 \mathrm{~mm} / \mathrm{yr}$, with highest velocitites along the eastern padania with a relatively low thickness. of Pliocene and Quaternary sediments at the top The buried thrust-related anticlines.
The dense network of GPS permanent stations allows a fairly accurate monito

Figure 1. Tectonic setting and kinematics in the Central Mediterranean area Mantovani et al., 2009a,b): 1-2) African and Adriatic continental domains; 3) oceanic lonian domain 4) outer sector of the Apennine belt carried by Adriatic plate (Adria) $5,6,7$) main compressional, extensional and transcurrent tectonic cene to Present) with respect to Eurasia. ELA = Eastern Lazio-Abruzzi platform ESA = Eastern Southern Alps, MS, RMU, TE $=$ Molise Sannio, Romagna-Marche-Umbria and Toscana Emilia tectonic wedges, PV = Po valley.

Horizontal kinematic pattern

Vertical velocity field

Emilia earthquakes: first results

