

Performing seismic scenarios in the Luchon-Val d'Aran area, Central Pyrenees

7th EUROGEO, Bologna, Italy, 12th-15th june 2012

Authors: A. Roullé (BRGM), A. Macau (IGC), S. Figueras (IGC), D. Monfort-Climent (BRGM), N. Lantada (UPC), T. Susagna (IGC), J. Irizarry (IGC)

Contact: Agathe Roullé (BRGM) – a.roulle@brgm.fr

Introduction

SISPYR project

- Interreg project between France and Spain
- M4: Seismic risk mitigation: shakemaps and risk scenarii
- Realization of 2 seismic scenarios in the pilot zone of Val d'Aran and Luchon-Saint Béat (part of the M4 module)
 - Deterministic scenario (1923 earthquake)
 - Probabilistic scenario (period return of 475 years)

Why here ?

- Important touristic zone within the Pyrenees. Ski resorts (Baqueira Beret, Superbagnères) and thermal (Bagnères de Luchon).
- One of the most active zone of France and Spain in terms of seismicity
 - M 4.8 in Lège (France) in 1999
 - Vielha earthquake in 1923. Intensity VIII-VII.

Deterministic scenario scheme

Deterministic scenario: seismic hazard map

- Based on observed intensities from 1923 earthquake
- Epicenter south of Vielha
- In Vielha downtown intensity VIII
- Intensities between VII (valleys) and V

Deterministic scenario: buildings typology map

Deterministic scenario: vulnerability index assessment

- Identification of the main building types within the zone
- Identification of the main vulnerability factors
- Association to RISK-UE types (vulnerability index)

Deterministic scenario: damage calculation (EMS98 scale)

Classification of damage to masonry buildings

Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only. Fall of loose stones from upper parts of buildings in very few cases.

Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster.

Partial collapse of chimneys.

Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage)

Large and extensive cracks in most walls.

Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-structural elements (partitions, gable walls).

Grade 4: Very heavy damage
(heavy structural damage,
very heavy non-structural damage)
Serious failure of walls; partial structural
failure of roofs and floors.

Grade 5: Destruction (very heavy structural damage) Total or near total collapse.

Deterministic scenario: results

- Physical damage to built environment
 - Partial collapse (D4) or complete collapse (D5) minor to 2%
 - Minor damage or no damage for the majority of buildings
 - Strong damage (D3) between 5 and 10% into the most important cities:
 Bagnères-de-Luchon and Vielha (close to epicenter)
 - No damage in Saint Beat (far from epicenter)

Probabilistic scenario scheme

Probabilistic scenario: intensity map

 Intensity map derived from previous works on Pyrenees (ISARD project, 2006) (return period: 475 years)

Intensity used on the whole pilot zone: VII-VIII

Probabilistic scenario: site effects assessment

- Analysis based on:
 - Geological maps
 - Geotechnical data (very few on the French side)
 - Geophysical data
 - H/V for site effects detection and resonance frequency measurement
 - MASW for Vs profiles (shallow depths up to 30 meters)
 - Array measurements for Vs profiles (medium depths up to 100 meters)
- Field work performed by IGC and BRGM
 - France: 75 H/V, 21 MASW, 3 arrays
 - Spain: 98 H/V, 8 arrays

Probabilistic scenario: site effects assessment (example of Vielha)

Probabilistic scenario: seismic hazard map

- Intensity increment calculated for each homogeneous site effects zones (with geophysical measurements)
- Extrapolation to zones without geophysical measurements (on base of geology)
- Intensity increment map on the whole pilot zone (EMS98 scale)
- Stronger site effects on the French side (larger valleys with deeper sediments deposits)

Probabilistic scenario: results

- Vulnerability: same as deterministic scenario
- Damage calculation method: same as deterministic scenario
- Physical damage to built environment:
 - Higher expected damage on French side (stronger site effects and vulnerability)
 - Heavy damage (D4 and D5) <10%
 - Big number of buildings on D2-D3 damage state

Conclusions

- Realization of 2 scenarios for seismic risk mitigation purposes
 - A deterministic one (1923 earthquake)
 - A probabilistic one (return period of 475 years)
 - Including:
 - Regional seismicity (regional seismic hazard)
 - Site effects (local seismic hazard)
 - Building stock vulnerability
 - Calculation and mapping of buildings damage distributions
- Both scenarios show:
 - Low ratio of partial or total collapse,
 - → reduced number of potential victims
 - Important number of buildings with slight to moderate structural damage
 - → important number of people without shelters, important economic loss
- Probabilistic scenario
 - Necessary to avoid bias due to source location for damage comparison between two neighborhoods (attenuation of seismic motion when moving away from epicenter)
 - It highlights the higher vulnerability and higher site effects on the French side (higher expected damage)
- What is next?
 - Presentation of the results to local authorities (at the end of 2012)

Thank you for your attention

