

Soil is a multi dimensional body

































in the pie charts instead of commas read dots Land take in E-R plain 1861 1954 Urban and industrial 73,1% Urban and Cropland industrial 91,3% Cropland ■ Wood ■ Wood Grassland, 11,3% 12,6% and natural Grassland, bush 4,6% Wetland an 1,5% and natural areas **1,5%** Wetland and rivers **2,4%** 0,9% 1976 2003 Urban and industrial Urban and 89,3% industrial 81,2% Cropland Cropland ■ Wood Wood Grassland and natura Grassland, bush areas 4,4% and natural areas Wetland a 13,1% rivers Wetland and 0,7% rivers 2,2% 0,6% servizio geologico sismico e dei suoli 7<sup>th</sup> EUREGEO Regione Emilia Romagna



## Food security impacts

**Emilia-Romagna Plain** 

| Land Use                          | 2003    | 2008     | 2008-2003 |
|-----------------------------------|---------|----------|-----------|
|                                   |         | hectares |           |
| Urban and<br>Industrial Areas     | 160 953 | 174 278  | 13 325    |
| Wood, Grassland and Natural Areas | 19 195  | 20 261   | 1 066     |
| Cropland                          | 949 754 | 934 047  | -15 707   |
| Wetlands and<br>Rivers            | 72 615  | 73 912   | 1 297     |

Daily calories need per person: 2.400 Kcal

Wheat calories: 3170 Kcal kg<sup>-1</sup>

Population of the plain (2011): 3 023 483

Wheat production (2010): 7.3 t ha<sup>-1</sup>

Cropland lost (from 2003 to 2008): 15 700 ha

Wheat equivalent in lost cropland: 114 771 t

People potentially fed in one year: 415 325 (13.4% of the inhabitants)









red circle is about 1 hectare

#### C content above soil

Trees: 1.75 t

Urban (concrete): 0.18 t Roads (asphalt): 0.32 t Industrial (concrete) ~0

**C** content Soil

Organic carbon (TOC): 52.15 t

#### C content above soil

Trees: 0.5 t

Urban (concrete): 0.16 t

Roads (asphalt): 0.62 t

Industrial (concrete): 0.72 t

**C** content Soil

Organic carbon (TOC): 5.5 t





red circle is about 1 hectare

|                                                       | 1861 | 1954 | 1976 | 2003 |
|-------------------------------------------------------|------|------|------|------|
| E-R Plain Soil Organic Carbon (TOC)<br>[Million of t] | 71.0 | 70.5 | 70.5 | 67.6 |
| <i>per capita</i> carbon                              |      |      |      |      |
| concrete + asphalt [t]                                | <1   | 1    | 3    | 3    |
| soil + trees [t]                                      | 110  | 64   | 56   | 50   |

**Every tons of C means 3.67 tons of CO<sub>2</sub>** 



(Environ Sci Technol 45, 5112-5117)





### Hydrologic impacts

# Soil sealing increases runoff coefficients

Emilia-Romagna: provisions for "hydraulic invariance" (Ing Amb 30 407-413)

# Soil sealing reduces soil water storage and infiltration

Faster response of catchments to rainfall Long-term effects on water availability

### Increase of impervious surface

→ increase of % rainfall going to direct runoff φ

e.g.  $\phi = 20\%$  in natural soils  $\Rightarrow \phi$  90% in sealed soils









Volume required for hydraulic invariance at catchment level. (1=below 100 m³; 2=between 100 and 1 000 m³; 3= 1000 to 10 000 m³; 4= 10 000 to 100 000 m³; 5=100 000 to 1 000 000 m³).

To adequate the water distribution/collection network in the E/R plain with flood storage areas and pumping station the need is some billion of €





### Urban Heat Island

Increase of yearly mean temperature about 3°C (strongest effect mainly in summer ~5°C)

Increase of pollution

Bioclimatic discomfort

Overload of energy network during the heat waves and need of structural adequation



We estimate that the effect of Urban Heat-Islands leads to a more extended use of air-conditioners in urban areas. The greater energy requirement is quantifiable in about 8 KWh per day and per apartment

On E-R plain from 1974 to 2001= ~236 000 new apartment

So, assuming that only 50% of new apartments are air-conditioned, in a hot summer day we need an additional energy requirement of about 1 GW h<sup>-1</sup> (e.g. the Piacenza power plant produce 0,85 GW h<sup>-1</sup>)







# Source of raw material

Raw material extracted from 2003 to 2008
64 million m<sup>3</sup>





Micro level Macro level

Economic value /price









Carbon sink (1861-2003) 12.5 MILLION t of CO,

>>BIOCLIMATIC DISCOMFORT > HEALTH DISEASES







