

FROM DRAWING ANTICLINE AXES TO 3D MODELLING OF SEISMOGENIC SOURCES: EVOLUTION OF SEISMOTECTONIC MAPPING IN THE PO PLAIN

<u>Burrato P.</u>*, Maesano F. E. *, D'Ambrogi C.**, Toscani G.°, Valensise G.*

(*) INGV, Istituto Nazionale di Geofisica e Vulcanologia, pierfrancesco.burrato@ingv.it; framae80@gmail.com; gianluca.valensise@ingv.it

(**) ISPRA, Servizio Geologico d'Italia/Dipartimento Difesa del Suolo, chiara.dambrogi@isprambiente.it

(°) Dipartimento di Scienze della Terra, Università di Pavia, toscani@dst.unipv.it

THE PROBLEM

The Po Plain is a challenging area for active tectonics studies. In this almost flat region:

- ✓ Strain rates are low;
- Seismicity is moderate and infrequent;
- Regional tectonic signal is larger than local ones;
- Sedimentary rates are much higher than tectonic ones;
- Locally, large man-induced vertical ground motion.

Hence:

✓ Faulting and folding is is almost everywhere blind.

To identify and characterize Seismogenic Sources we need an approach that integrates morphotectonic analysis and (possibly) high resolution subsurface geological and geophysical datasets.

ACTIVE DEFORMATION: GPS

GPS velocities not able to capture the activity of the outer blind thrust fronts!

HISTORICAL AND INSTRUMENTAL SEISMICITY

CPTI11 - http://emidius.mi.ingv.it/CPTI11/ ISIDe - http://iside.rm.ingv.it/iside/ Catalogo della Sismicità Italiana - http://csi.rm.ingv.it/

REGIONAL vs LOCAL TECTONIC SIGNAL

DRAWING ANTICLINE AXES

Fig. 1. -- I rilievi isolati della Pianura Lombarda (aree punteggiate) e gli assi delle rispettive anticlinali (linee nere con due frecce).

Desio, 1965

ACTIVE FAULTS AND THEIR GEOMORPHOLOGICAL EVIDENCE

BUILDING A SEISMOGENIC SOURCE MODEL

Bigi et al., 1992 – Modello Strutturale d'Italia

BUILDING A SEISMOGENIC SOURCE MODEL

Bigi et al., 1992 – Modello Strutturale d'Italia AA.VV.

BUILDING A SEISMOGENIC SOURCE MODEL

An inventory of river anomalies in the Po Plain, Northern Italy: evidence for active blind thrust faulting

FROM GEOLOGICAL/GEOMORPHOLOGICAL DATA TO SEISMOGENIC SOURCES

DISS v. 3.1.1 - http://diss.rm.ingv.it/diss/

✓ GIS based database✓ Web interface✓ Google Earth

THE EMILIA SEISMIC SEQUENCE

THE EMILIA SEISMIC SEQUENCE

Mirandola Anticline Ferrara Anticline

Carminati et al., 2010

COSEISMIC SURFACE DISPLACEMENT

SAR image from: http://comunicazione.ingv.it/primo-piano/report_sar_ingv_emilia_2.pdf

DRAINAGE EVOLUTION IN THE EMILIA PLAIN

Burrato et al., 2003

DRAINAGE ANOMALIES IN THE EMILIA PLAIN

Burrato et al., 2003

GROWTH STRATA ACROSS THE MIRANDOLA ANTICLINE

DISLOCATION MODELING

CALCULATING SLIP RATE USING DISLOCATION MODELING

Burrato et al., 2003

REFINING SR CALCULATIONS USING HIGH RESOLUTION DATA

Uplift rate since Pleistocene

1.70 mm/a without considering differential compaction – Burrato et al., 20030.53 mm/a using a decompaction workflow – Scrocca et al., 2007

A NEW APPROACH: FROM RAW DATA TO SR

Fault propagation folds: trishear

DATASET

Regional cross sections

CONSTRUCTION OF 3D MODELS FROM 2D SECTIONS

2

Maesano et al., 2010 - Geoltalia

DECOMPACTION

10% thickness changes at anticline axes Up to 40% thickness changes in synclines

RESULTS

Maesano et al., 2010 - Geoltalia