

7th EUropean Congress on REgional GEOscientific Cartography and Information Systems

Sustainable Geo-Management

Bologna, 12th - 15th June, 2012

SEISMIC MICROZONATION OF THE GIRONA URBAN AREA (CATALONIA, NE SPAIN) FROM STATISTICAL ANALYSIS OF GEOTECHNICAL DATA

David Soler ⁽¹⁾, David Brusi ⁽¹⁾, Manel Zamorano ⁽¹⁾, Xavier Goula ⁽²⁾, Sara Figueras ⁽²⁾, Albert Macau ⁽²⁾, Andreu Martí ⁽²⁾ and Miquel Vilà ⁽²⁾

<u>Index</u>

- **1. Introduction**
- 2. Seismotectonic and geological setting
- 3. Geotechnical database processing
- 4. Seismic parameterization of soil and rock units
- 5. Site soil amplification
- 6. Seismic microzonation
- 7. Conclusions

1. Introduction

• At a local level, a first approach to the potential effects of damaging earthquakes is the estimation of ground movements due to amplification of the seismic vibrations ("soil effect").

 Soil dynamic parameters can be obtained by correlation from geological and geotechnical data, according to equivalences defined in national seismic normatives (e.g.: Spanish Seismic Building Code, NCSE-02).

• In urban areas expanded and developed during the last decades, ground investigation reports are abundant and represent a valuable source of geolocated variables with seismic significance.

• Basic level **microzonation** of the Girona urban area has been conducted by:

- i. statistical processing of a geological and geotechnical **database**,
- ii. quantitative **seismic characterization** of the soil and rock units,
- iii. site specific determination of **soil coefficients** influencing the local seismic response, and
- iv. cartographic delineation of **isoamplification zones** within the urban framework.

This work is included in the SISPyr project, program INTERREG IV A

2. Seismotectonic and geological setting

- Eastern end of the **Pyrenees** and the **Catalan Coastal Ranges**
- Neogene grabens filled with sediments and basic volcanics
- Plioquaternary NW-SE
 trending normal faults
 Some of them are
 seismogenic sources

Historical and instrumental seismicity

- · Moderate periodical seismicity
- Low rates of strong events up to Mw=6.3-6.8 (475-year return period)
- Estimated peak ground acceleration (PGA) for Girona:

0.070 g – 0.090 g (NCSE-02) 0.077 g-0.102 g (Secanell *et al.*, 2008) 0.140 g (Mezcua *et al.*, 2011)

(www.igc.cat)

Local geology

Simplificated from 1:25,000 IGC geological maps

Girona urban area Litho-stratigraphical units Anthropogenic Artificial fillings Α Holocene Active river beds Qt0 Recent fluvial terraces Qt1s-Qt1i Alluvial-colluvial deposits Qcah-Qcdh Pleistocene Fluvial terraces Qt2s-Qt2i Qt34 Older fluvial terraces Qcap-Qcdp Alluvial-colluvial deposits QI Loess Qtr Travertines **Basaltic volcanics** Qv-Qb Neogene Alluvial deposits Ν Paleogene Egl, Em, Sedimentary rocks Ec, PEcq Paleozoic Igneous and MC, G, metamorphic rocks SD, Or, CO Plioquaternary fault

3. Geotechnical database processing

• Database of geological and geotechnical investigation reports compiled by GEOCAMB (University of Girona).

- Typologies of prospection points included:
- Boreholes (85% out of total)
- Dynamic probing tests (DPSH)
- Excavations
- Wells
- Natural outcrops

Structure of the database

material

(Qt2s)

SEISMIC MICROZONATION OF THE GIRONA URBAN AREA (CATALONIA, NE SPAIN) FROM STATISTICAL ANALYSIS OF GEOTECHNICAL DATA

material

(Qt2i)

Prospection points

soil sample

Statistical synthesis of geotechnical parameters

- Carried out for each one of the lithostratigraphical **soil units** (Quaternary, Neogene and some altered rock units).
- · Summarized parameters:
- i) <u>In situ tests</u>:
- Standard penetration test blow count, **SPT-N**
- Dynamic Probing Super Heavy penetration test, DPSH-N
- ii) Laboratory tests on soil samples:
- Unconfined shear strength, Qu
- Granulometric percentages, especially fine content
- Atterberg limits and Casagrande plasticity charts
- Dry-wet density and natural humidity content

- NCSE-02 sets direct correlation of SPT-N and Qu with:
- Seismic soil class
- Soil coefficient C
- Shear wave velocities, Vs

Inferred after code definitions about compactness of granular materials and consistency of cohesive materials, by comparison to values published in the geotechnical literature

Seismic	Soil	Ve (me-1)	Rock	Granular soil	Cohesive soil		
soil class	coefficient C	v 3 (113)	NOCK	SPT-N	SPT-N	Qu (kPa)	
Ι	1.0	> 750	Unaltered	> 50	-	-	
II	1.3	400 - 750	Fractured	31 - 50	> 30	> 400	
III	1.6	200 - 400	-	11 - 30	8 - 30	100 - 400	
IV	2.0	< 200	-	0 - 10	0 - 7	0 - 100	

\cdot Synthesis of $\textbf{Q}_{\textbf{u}}$ data for cohesive soil units

4. Seismic parameterization of soil and rock units

- · Soil coefficient **C** calculated by two parallel ways for **each unit**:
- Based on SPT-N data → C_(SPT-N)
- Based on Qu data

 $\rightarrow C_{(SPT-N)}$ $\rightarrow C_{(Qu)}$

 $[C_{(\text{SPT-N})} \& C_{(\text{Qu})}] = [n_{(I)} + (n_{(II)} \cdot 1.3) + (n_{(III)} \cdot 1.6) + (n_{(IV)} \cdot 2)] / n$

	SPT-N records (Refusal excluded)						Laboratory samples resistance tests					
Unit	n	n (I)	n(II)	n(III)	n(IV)	C _(SPT-N)	n	n (I)	n(II)	n(III)	n(IV)	C _(Qu)
Qcah	359	6	25	225	103	1.68	52	0	7	33	12	1.65
Qt2s	543	3	7	393	140	1.70	71	0	0	44	27	1.75
Qt2i	898	148	279	398	73	1.44	4	0	0	4	0	1.60
N	1104	160	399	496	49	1.42	156	6	49	85	16	1.52

 \cdot A representative soil coefficient **C**(**R**) for all the units is derived from integrated consideration of:

- C_(SPT-N)
- **C**_(Qu)
- Granulometric percentages and fine content (granular/cohesive/mixed geotechnical character)
- Density, humidity, plasticity and other descriptive information

 \cdot Additionally, shear wave velocities V_s have been calculated for each individual SPT value by empirical equivalences (Kanai *et al.*, 1966), and then summarized by units.

 $V_{s} = 62 \text{ SPT-N}^{0.6}$

Unit	Geotechnical behaviour	C _(SPT-N)	C _(Qu)	C _(R)	Vs (ms⁻¹)	Assigned soil class
A	Heterogeneous	1.87	-	2.0	120 - 351	IV
Q10	Cranular			2.0		IV
QHS	Mixed	1.86	1.70	1.8	151 - 330	III - IV
Qt1	Granular	1.62		1.6	216 - 584	100[
Qeah	Mixed	1.68	1.65	1.7	182 - 458	III - IV
Qedh	Mixed / Cohesive	1.93	1.73	1.8	161 - 279	VII – IIII
Qt2s	Mixed / Cohesive	1.70	1.75	1.8	163 - 374	III – IV
Qt2i	Granular	1.44	1.60	1.45	275 - 701	III – III
Qt34	Mixed	1.30	1.45	1.3	355 - 676	II
Qcap	Mixed / Granular	1.30	1.60	1.6	372 - 736	III
Qcdp	Mixed / Cohesive	1.68	1.80	1.7	199 - 453	III - IV
Q	Mixed	1.70		1.8	380 - 679	III – IV
Qtr	Rock / Mixed	-		1.3/2.0		II / IV
Qv	Granular	1.77	I	1.8	146 - 378	III - IV
Qb	Granular / Rock	1.47	_	1.45 / 1.15	343 - 648	Π – Π / Ι – Π
N	Mixed	1.42	1.52	1.45	<u> 315 - 701</u>	
Em	Rock / Cohesive	1.36	1.00	1.0 / 1.15 - 1.3	-	<u>][/][–]][</u>
PEcg	Rock / Cohesive	1.19	1.27	1.0 / 1.15 - 1.3	-	I/I-II
Egl, Ec	Rock	-	-	1.0	-	I
MC, C, SD, Or, CO	Rock	-	-	1.0		Ī

5. Site soil amplification (NCSE-02)

- · Seismic calculus acceleration \mathbf{a}_{c} is:
 - $\mathsf{a}_{\mathsf{c}} = \mathsf{S} \cdot \rho \cdot \mathsf{PGA}$
- Soil amplification factor
 ρ: non-dimensional risk coefficient
 (1.0-1.3 for normal-special importance buildings)
- · Since PGA (Girona area) is 0.07-0.09, then $S_{(PGA<0.1)} = C / 1.25$
- · Soil coefficient **C** is a good indicator in estimation of soil effect:

$$C = (\sum C_{i} \cdot e_{i}) / 30$$

C_i: Soil coefficient C **e**_i: individual thickness

for all the soil class layers in the first 30 m from the surface

• Database: great **heterogeneity** in the amount, precision and confidence of **available data** among the prospection points.

- <u>Borehole</u>:

30 m?

Pre-Quaternary substratum? Continuous/discontinuous core? Representativeness of the core? Dynamic probing log? (no core)

- Lithology levels:

Valid SPT-N data? (not refusal) Lab. resistance tests on unaltered soil samples?

• Need of systematization in the process to obtain C

1,530 boreholes: many boreholes with few or poorly constrained data

С

1.51

lqc

3.08

 \cdot Additionally, each C_i case is attributed to a quality (confidence) index, \mathbf{I}_{qci}

 $I_{qc} = (\sum_{i} I_{qci} \cdot e_i) / 30$ I_{qci} : **1-4** (poor to very good C_i confidence)

 \cdot Example of **C** and I_{qc} calculation for one borehole:

		SPT-N		C :	Qu		C .	•	Oritoria	•	
Unit	ei (m)	(m)	% e i	CI(SPT-N)	(m)	% e i	CI _(Qu)	С _(R)	Criteria	С _і	IqC _i
Α	0.5	0	0	-	0	0		2.0	A1	2.0	2
Qcah	6.0	3	50	1.8	0.45	7.5	1.6	1.7	N1, M4	1.71	3.5
N	3.5	0.6	17	1.6	0	0	1	1.45	N2	1.49	3
N	20.0	-	-	-	-	-	-	1.45	<mark>S1</mark>	1.45	3

Borehole reference: 200401610

6. Basic level seismic microzonation

· C coefficient isoamplification zones

Zone A-1

Rock cropping out or covered by a thin layer of Quaternary sediments.

Zone A-2

Rock overlain by 5-20 meters of low seismic quality Quaternary sediments. **Zone B**

i) Neogene sediments, ii) Quaternary alluviums up to 20 m thick overlying Neogene, iii) weathered Quaternary lava flow up to 15 m thick, over Quaternary and Neogene sediments.

<u>Zone C</u>

Local thick, soft Quaternary alluviums on Neogene.

7. Conclusions

 \cdot Geotechnical databases: a valuable source of ground $\sqrt{}$ information for basic seismic analysis.

 Direct correlation of geotechnical and geological characteristics to soil dynamic parameters by means of v published equivalences (seismic building codes).

 Weighted contribution of seismic parameters obtained by parallel, complementary ways allows to get standardized seismic data, instead of how much / how
 good available information comes out from the boreholes.

7. Conclusions (continued)

 This methodology reveals as a good complement in the determination of local seismic response from other direct v techniques.

Resulting microzonation sets a starting tool for more specific targets: field geophysical measurements, vinumerical simulations in selected emplacements, and viperformance of risk scenarios.

 \cdot Data compilation, filtering and processing is time \bigstar consuming.

· Geotechnical investigations are usually shallow.

• NCSE-02 only considers soil effect up to 30 m depth.

Vi ringrazio per la vostra attenzione

http://geocamb.udg.edu

http://www.igc.cat

26