

THE 3-REGIONS WORKING GROUP SLOPE INSTABILITIES (Slopeln)

COMMON LANGUAGE, COMPARABLE HAZARD MAPPING AND SHARED EXPERIENCES ACROSS EUROPE

History:

1992:

Start of the informal collaboration between the Geological Surveys of Emilia-Romagna, Catalonia and Bavaria in the fields of the Earths Science and Information Systems.

→ Organisation of conferences in Bologna (1994), Barcelona (1997), Munich (2000) and Bologna (2003)

History:

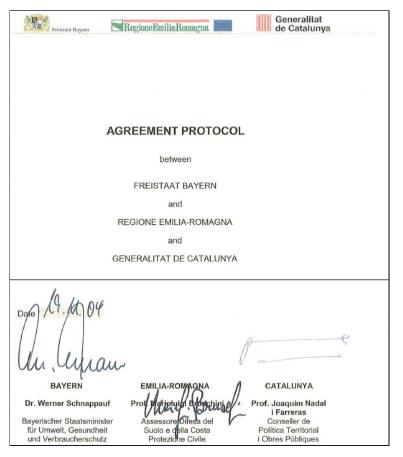
November the 19th, 2004:

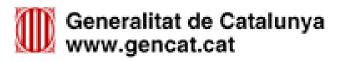
Based on this collaboration programme an **Agreement Protocol** was signed between:

Regione Emilia-Romagna

Generalitat de Catalunya

Free State Bayaria





History: November the 19th, 2004

Bayerische Staatsregierung

History: November the 19th, 2004

Main one main target of the **Agreement Protocol**:

"assess hazards, minimising risks and maximising awareness to enhance sustainable development and quality of life"

History:

Following:

2006:

Organisation of the conference in Barcelona

2009:

Organisation of the conference in Munich

History:

At the last conference in Munich 2009 the Organising Committee decided to implement different working groups in order to strengthen the collaboration in particular areas of interest of the three regions.

One working group was called "Land Instabilities".

Slope Instabilities Working Group

Slopeln

The Slopeln Working Group:

Members:

Marta González, Institut Geològic de Catalunya, mgonzalez@igc.cat

Giovanni Bertolini, Servizio Geologico, Sismico e dei Suoli Regione Emilia Romagna, GBertolini@regione.emilia-romagna.it

Karl Mayer, Bavarian Environment Agency, Karl.Mayer@lfu.bayern.de

Results of the collaboration of Slopeln:

European AdaptAlp Project

(Adaptation to climate change in the Alpine space)

Multilingual glossary for landslides.

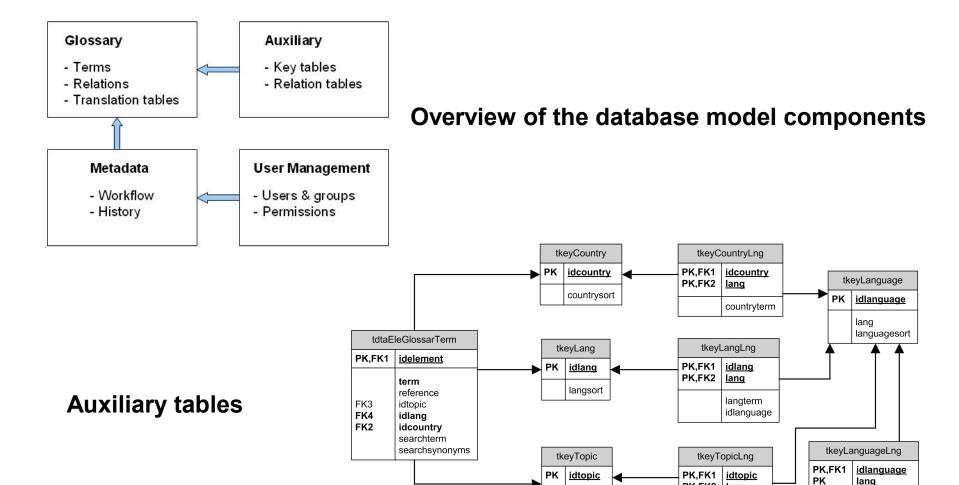
Minimum Requirements for the creation of hazard maps and methodologies.

Results of the collaboration of Slopeln:

AdaptAlp

AdaptAlp

- Bavarian Environment Agency
- Land Kärnten (Dep. Environment)
- Federal Office for the Environment (Swiss)
- Geological Survey of Slovenia
- Institut Geologic de Catalunya (Spain)
- Servicio Geologico, Sismico e del Suoli (Emilia-Romagna, Italy)
- Office National des Forets (RTM)
- Britisch Geological Survey



Development of a multilingual glossary for geological hazards

Development of a multilingual glossary for geological hazards

languagesort

PK,FK2

lang

topicterm

topicsort

For filling the Glossary with contents *Slopeln* took the responsibility for Catalan, Spanish, German and Italian language

		DE			FR		EN			
id	term	definition	reference	topic	same	similar	direct	same	similar	direct
2080	Hauptrutschmasse	Gesamter Rutschkörper der primären Hangbewegung.	LfU Bayern	Rutschungsmerkmale	1080			3080		
2081	Rutschungsfuß	Unterster Teil des Rutschkörpers.	LfU Bayern	Rutschungsmerkmale	1081			3081		
2082	Stirnwulst	Wulst am Rutschungsfuß.	LfU Bayern	Rutschungsmerkmale	1082			3082		
2083	Gleitbahn	Bewegungsbahn von Rutschprozessen.	LfU Bayern	Rutschungsmerkmale	1083			3083		
2084	Bergsturz	Hangbewegung mit großem Volumen und hoher Dynamik, die oftmals dafür sorgt, dass die Massen am Gegenhang weit aufbranden. Volumen > 1.000.000m°.	LfU Bayern	Sturzprozess	1084			3084		
2085	Blockschlag	Periodisches Sturzereignis von einzelnen, kleineren Festgesteinspartien mit einer Blockgröße von > 1m ^a	LfU Bayern	Sturzprozess	1085				3085	
2086	Felssturz	Abstürzen ganzer Felspartien, Volumen 10- 1.000.000m², die Dynamik ist deutlich geringer als beim Bergsturz. Im Gegensatz	LfU Bayern	Sturzprozess		1086			3086	
2087	Steinschlag	Periodisches Sturzereignis von einzelnen, kleineren Festgesteinspartien bis hin zur Blockgröße. Volumen 0-10m ⁸ .	LfU Bayern	Sturzprozess	1087				3087	
2088	Doline	Relativ engräumige, mehr oder weniger runde Hohlformen an der Erdoberfläche als Folge der Auflösung von Sulfat-, Chlorid- oder Karbonatgesteinen durch über Klüfte versickernde Oberflächenwässer.	LfU Bayern	Subrosionsprozess	1088			3088		
2089	Uvala	\"Zusammenwachsen\" von mehrerer Dolinen zu einer größeren Senke	LfU Bayern	Subrosionsprozess	1089			3089		
2090	Dolinenfeld	Anhäufung mehrerer Dolinen.	LfU Bayern	Subrosionsprozess	1090			3090		
2091	Erdfall (Vorgang)	Erdfälle bilden sich infolge unterirdischer Lösung/Ausspülung durch den plötzlichen Einsturz der Erdoberfläche und bilden Trichter- oder Schlotformen, die bei oft nur geringer Tiefe einen Durchmesser von Dezimetern bis zu Zehnermetern aufweisen. Erdfällgebiete sind in ihrer Ausdehnung meist bekannt, doch kann der einzelne Erdfäll sowohl zeitlich als auch örtlich kaum vorhergesagt werden. Man findet sie in Gruppen; mitunter sind sie auch perlschnurartig aneinander gereiht.	LfU Bayern	Subrosionsprozess	1091			3091		

The Glossary:

Glossar

This glossary aims at an international harmonization by providing the user with a selection of official terms used by the geological agencies in a specific country and by setting relations to synonymous terms employed in other countries. Terms with (*) at the end are not used in the selected source language but are translated literaly to understand the meaning.

The Glossary:

Glossar

Dieses Glossar dient der internationalen Begriffsharmonisierung im Bereich Hangbewegungen und Gefahrenkartierung für geologische Prozesse. Es stehen Begriffe zur Auswahl, die in den jeweiligen Regionen und Ländern von den Geologischen Diensten offiziell benutzt werden. Für nicht direkt übersetzbare Begriffe werden Synonyme mit Erläuterungen angegeben. Begriffe mit (*) am Ende werden in der gewählten Ausgangssprache nicht verwendet, sind aber wörtlich übersetzt, um die Bedeutung verständlich zu machen.

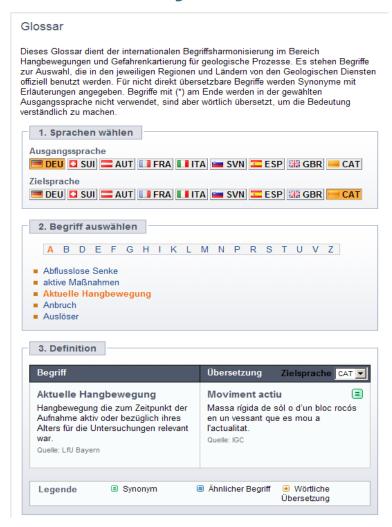
2. Begriff auswählen

A B D E F G H I K L M N P R S T U V Z

- Abflusslose Senke
- aktive Maßnahmen
- Aktuelle Hangbewegung
- Anbruch
- Auslöser

Slopein - COMMON LANGUAGE, COMPARABLE HAZARD MAPPING AND SHARED EXPERIENCES ACROSS EUROPE

The Glossary:



Slopein - COMMON LANGUAGE, COMPARABLE HAZARD MAPPING AND SHARED EXPERIENCES ACROSS EUROPE

The Glossary:

Terms which are used in the Geological Surveys of the

Because of the inconsistent usage of terms and definitions the comparability of susceptibility, hazard and risk maps is very difficult.

This fact could cause understanding problems.

Therefore three common definitions for three main types of maps were elaborated inside a Workshop held in Munich at December 2010.

Definitions

Landslide Susceptibility Map Level 1

Landslide Susceptibility Map Level 2

Landslide Hazard Map

Landslide Susceptibility Map Level 1

A Landslide Susceptibility Map (Level 1) is used for the first identification of areas showing conflicts of interests or areas under suspicion to be hazardous. It is a map created on objective, scientific criteria with information on hazard susceptibility, which are not analysed, identified and localised in detail. With empirical, statistical or deterministic methods these maps show the basic disposition for the development of landslides. In general only the potential detachment zone of the landslides is shown and no classification of different hazard levels (probability and intensity) is done.

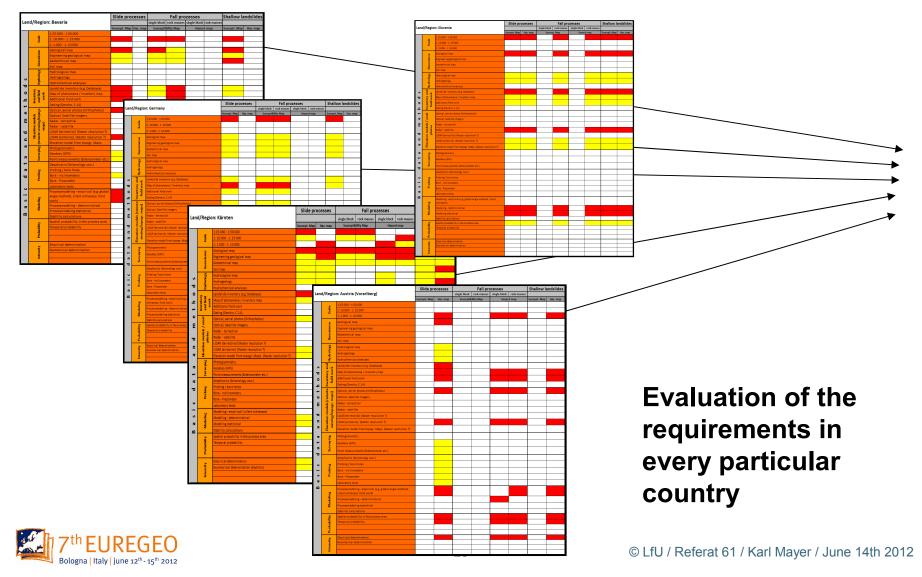
Landslide Susceptibility Map Level 2

A Landslide Susceptibility Map (Level 2) is used for the first identification of areas showing conflicts of interests or areas under suspicion to be hazardous. It is a map created on objective, scientific criteria with information on hazard susceptibility, which are analysed, identified and localised. With empirical, statistical or deterministic methods these maps show the basic disposition for the development of landslides. In general the whole process areas of the landslides and the propagation areas are shown (potential detachment and runout zone) and no classification of different hazard levels (probability and intensity) is done.

Hazard Map

A Landslide Hazard Map builds the base for urban land use planning and the development and the costing of protective measures. It is a map created on objective, scientific criteria with information to hazard, which are analysed, identified and localised in detail. With empirical, statistical or deterministic methods in general the whole process areas of the different types of landslides, including the propagation areas are considered (potential detachment and runout zone) and a classification of different hazard levels based on probability and intensity is done.

Comparison of the different maps in our countries


(Based on the "new" definitions)

Country	Process	Landslide Suscep. Map (L1)	Landslide Suscep. Map (L2)	Hazard Map				
	slide		Susc Map (1:25.000)					
Germany (Bavaria)	fall		Susc Map (1:25.000)					
100 CC	shallow landslides		Susc Map (1:25.000)					
	slide			Hazard Zone Map (1:2.000)				
Austria (WLV)	fall			Hazard Zone Map (1:2.000)				
A 22	shallow landslides			Hazard Zone Map (1:2.000)				
Austria /CDA and	slide	Susc Map (1:25.00	0-50.000)	Hazard Zone Map (1:1.000-1:10.000)				
Austria (GBA and Carinthia)	fall	Susc Map (1:25.00	0-50.000)	Hazard Zone Map (1:1.000-1:10.000)				
	shallow landslides	Susc Map (1:25.00	Hazard Zone Map (11.000-110.000)					
	slide		Susc Map (1:10.000-1:50.000)	Hazard Map (1:2.000-1:10.000)				
Switzerland	fall		Susc Map (1:10.000-1:50.000)	Hazard Map (1:2.000-1:10.000)				
	shallow landslides		Susc Map (1:10.000-1:50.000)	Hazard Map (1:2.000-1:10.000)				
Great Britain (BGS)	slide	Susc Map (1:10.000-1:50.000)						
	fall							
	shallow landslides	Susc Map (1:10.000-1:50.000)						
Italy (Arpa Piemonte)	slide		Atlas of Hydrogeolog	geological Risk (1:10.000)				
	fall		Atlas of Hydrogeological Risk (1:10.000)					
	shallow landslides		Atlas of Hydrogeolog	gical Risk (1:10.000)				
	slide			Hazard Plan (1:5.000-1.10.000)				
Italy (South Tyrol)	fall			Hazard Plan (1:5.000-1.10.000)				
11 55	shallow landslides			Hazard Plan (1:5.000-1.10.000)				
	slide		Susc	Map (1:10.000)				
Italy (Emilia Romagna)	fall							
11111	shallow landslides	Susc Map (1:10.000)						
	slide		Geological Risk I	Prevention Map (1:25.000)				
Spain (Catalonia)	fall		Prevention Map (1:25.000)					
	shallow landslides		Geological Risk I	Prevention Map (1:25.000)				
	slide	Susc Map (1:250.000)						
Slovenia	fall	Susc Map (1:250.000)	Hazard Map (1:25.					
	shallow landslides	Susc Map (1:250.000)	Hazard Map (1:25.) in progress				
	slide	Plan for Prevention of Natural Hazard (1:25.000)	Plan for Prevention of Na	atural Hazard (1:10.000)				
France	fall	Plan for Prevention of Natural Hazard (1:25.000)	Plan for Prevention of Natural Hazard (1:10.000)					
	shallow landslides	Plan for Prevention of Natural Hazard (1:25.000)	Plan for Prevention of Natural Hazard (110.000)					

Minimum requirements for susceptibility and hazard maps

Minimum requirements for susceptibility and hazard maps

				Slide processes					Fall prozesses			llow land	Islides	Details			
		Map Ma		Hazard				Hazard map		Landslide Susceptibility		Hazard					
					single block		rock masses		single block rock masses		Map		Мар				
		Level 1	Level 2	Haz. map	Level 1	Level 2	Level 1	Level 2	Haza	ard map	Level 1	Level 2	Haz. map				
Geologycal maps and derivated	Geological map													use of geological maps and all deviated prod			
Landslide inventory	Landslide inventory (e.g. Database/ Inventory Map)													landslide inventory in the broadest sence including field investigation and validation			
sense	Field work (Investigation/Validation)																
	Elevation model																
- · · · · · · · · · · · · · · · · · · ·	Optical, aerial photos (Orthophotos)																
Elevation models /areal photos	LIDAR (terrestrial)																
rai cai piiotoc	LIDAR (airborne)																
	Elevation model from topogr. Maps																
-	Modeling				D	D+P	D	D+P	D+P	D+P	D	D+P	D+P	modeling in the broadest sence. Slide process areas can be found by field investigation			
broadest sense (slides can be	Modeling - deterministical				D	Р			Р	Р	D	D+P	D+P				
found by field	Modeling - statistical				D						D	D+P	D+P				
investigaton)	Modeling - empirical				D	D	D	D+P	D	D+P							
Probabilpty (spatial and temporal	Spatial probability in the process area													spatial and temporal probability must be unified i a matrix. Information can be qualitative			
probability must be unified in a matrix.	Temporal probability																
Intesity (Information can be qualitative)	Empirical determination													Information can be qualitative			
			D = Dis	position	ion Model (Detachment Zone) Model (Runout Zone)												
			P = Pro	cess Mo													
			Basic o	lata or m	nethod	is mant	atory										
			One out of several methods must be used														

Minimum requirements for susceptibility and hazard maps

Publications:

Multilingual Glossary

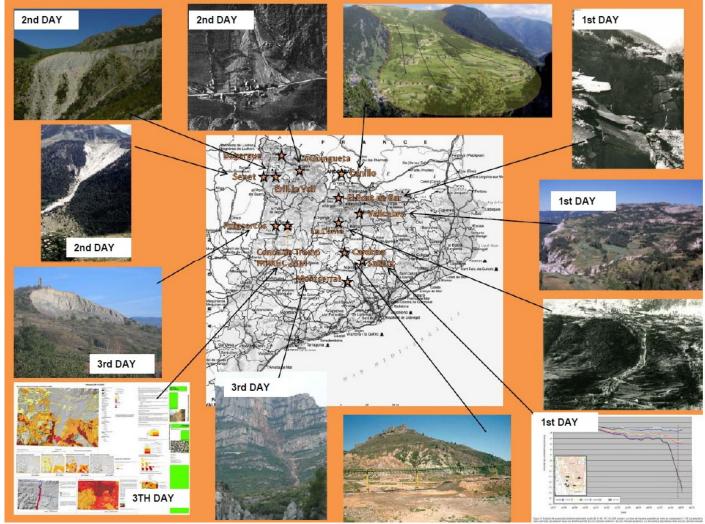
http://www.adaptalp.org

Multilingual Glossary and final report

http://www.lfu.bayern.de/geologie/mass enbewegungen/glossar/index.htm

Results of the collaboration of Slopeln:

Organization of a technical excursion for specialists to landslides and debris flows in Catalonia.


28 excursion participants from Geological Surveys, Water Authorities, Road Authorities and Universities of

Catalonia, France, Austria and Germany

have been guided by the IGC collaborators to the most important subsidence, landslide and debris flow sites in Catalonia.

Results of the collaboration of Slopeln:

The 7th congress of Bologna 2012:

Organization and of the Session 1 Slope Instabilities in the congress of Bologna in 2012.

Results of the collaboration of Slopeln:

The 7th congress of Bologna 2012:

Organization and of the Session 1 Slope Instabilities in the congress of Bologna in 2012.

Chairman

Professore Nicola Casagli - University of Firenze

