


## **INTRODUCTION**



- TARGETED STUDIES
- SYSTEMATIC CHARACTERIZATION



## AREAS PLANNED TO BE MAPPED

- 1:5000 scale
- County capitals and town>10000 inhabitants
- Total of 131 towns and 2200 km<sup>2</sup>
- 260 maps
- 60% belong to Barcelona metropolitan area



## **METHODOLOGY**

COMPILING PREVIOUS DATA

**ACQUIRING NEW DATA** 





ANALYSIS OF THE DATA



INTEGRATION IN A DATABASE

Previous geological maps and geological studies from IGC

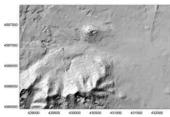


Other geologic maps and geoscientific studies



Applied geological studies (e.g. geotechnical)






Ancient cartographic documents

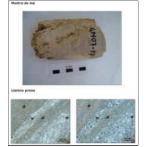




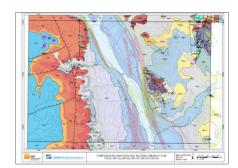

Actual cartographic documents



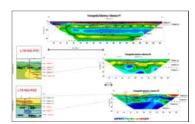
Location and characterization of outcrops

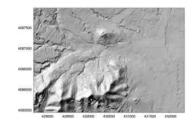






Sample analysis (petrography, geophysical and geochemical)

| reported the digner had |        |         |           |         |                 |        |       | Emerting and dig to have begin |            |        |            |           |             |             |              |             |             |              |           |           |
|-------------------------|--------|---------|-----------|---------|-----------------|--------|-------|--------------------------------|------------|--------|------------|-----------|-------------|-------------|--------------|-------------|-------------|--------------|-----------|-----------|
| Modes                   |        |         |           |         |                 |        |       |                                |            |        |            |           |             |             |              |             |             |              |           |           |
|                         |        | 100000  | More      | 180     |                 | 100    |       |                                |            |        | OF LAMPING | Mageria   | STORP IN    | IR not file | All Agents & | MARKET IN   | All AND THE | STAINTING.   | SE SAMPLE | HI SAPETY |
|                         |        | partie. | 101000    | Asin    | -               |        |       |                                | -          |        | 46 1/18    | 40.400    | 101-1-106   | 00.478      | silvature.   | Miles and A | 40-100      | ALC: UNKNOWN | 100-2788  | Mindow    |
| Commission of           | NUMBER |         | SERVICE . | -00000  | Admin.          | AMONG  | -0807 | 400000                         | THE BOOK O | -coron | ASPROVA    | equality. | min         | MOUTY       | AUDINO:      | ARTES       | 40000       | -sinker      | etermi-   | sende     |
| -                       | mous   | 10000   | 49000     | mmor    | reserv          | etendo | mean) | -                              | Industry   | (See ) | eners      | 45075     | oteans      | ennes.      | METH         | 19000       | 88750       | BESET        | com       | -         |
| 9696                    | Mile.  | 95.65   | 14.       | 10.6    | 10.75           | 15/81  | **    | 48                             | 100        |        |            |           |             |             |              |             |             |              |           |           |
| Allers Old.             | 14.79  | 100,75  | 1.00      | 0.00    |                 | 1856   |       | payer.                         | Arthur     | 1074   | 899        | 4.00      | 4.00        |             | 0.96         | 476         | 4.00        | 6.85         | 874       | 8.00      |
| Nutrition (Inc.)        | 6/70   | 1966    | 9.00      | 16.00   | 2000            | 4.60   | 10.70 | 490                            | Prints     | 3.69   | 689        | 5.00      | 4.90        |             | 100          | 122         | 4.00        |              | 8407      | 100       |
| Newtorthis              | 1470   | 1600    | 0.794     | In High | 1000            | hine.  | 3.090 | (C. Sec.)                      | Mic(gard)  | 100    | 40         | 1607      | 466         |             | Note:        |             | 487         | - m          | 96        | Mil.      |
| Married                 | 400    | No.     | 480       | 1948    | 0.00            | 5.06   | 0.48  | 418                            | 199.74     | 944    | 674        | 0.00      | 8%          | 9.06        | 1.00         | 1,70        | 1.00        |              | 406       | 100       |
| Call the                | 3.09   | 38      | 4675      | 628     | Disell<br>State | 648    | 5.00  | 1096                           | thebts     | 4.94   | 1.0        | 100       | 240         | Eig.        | 167          | 1.70        | 179         | 91.00        | 109       | 1.48      |
| Assistantian            | 678    | 100     | 947       |         |                 | 3.04   | 4.8   | Bekt.                          | An Pag     | 0.086  | 0.084      | 0.64      |             | 3.0%        | 0.00         | 6/84        | ADDIT       | 62%          | 4.08      | 1000      |
| 800 MG                  | 16786  |         | 4.69      | 16.00   | 6.00            | 444    | 2.00  | and -                          | 11.000     | 9.69   | KIM        |           | Salt        | 4.68        | 6.60         | 3.40        | 1.00        | 10.00        | Eugh.     | 6.00      |
| metros:                 | 0.400  | 41946   | 0.000     | 0.000   | 5.09            | 3,794  | 2644  | 240                            | Thirthe.   | 11.0%  | 6.00       | 9.16      | 518         | 0.06        | 1000         | 100         | 2.00        | 0.00         | 100       | 16.0      |
| Profession .            | 6.00   | 3390    | 316       | 15,766  | 100             | 0.08   | 15.66 | 60.                            | 7.04       | 6166   | 0.000      | 0.00      | 8376        | 0.000       | 0.800        | 0.00        | 0.000       | 1.8          | 200       | 0.007     |
|                         |        | 4.06    | 25.00     |         | 22              |        |       | 1607                           |            |        |            |           |             |             |              |             |             |              |           |           |
| See to                  | 100.0  | M IN    | 90.10     | **      | 10.00           | site s | 1000  | 16.0                           |            |        |            |           |             |             |              |             |             |              |           |           |
| many                    | 0.00   | *       |           |         |                 |        | 44    | 100                            | Albert     | 90     | 100        | -         | 535         | 64          | 76.0         | 18          | 461         | 404          | MA        | - MT      |
| Brisani                 | 40     | 100     | Asset     | 940     | 100             | THE    |       | 240                            | An horse   | 360    | WW.        |           |             |             | 100          |             | 246         | 400          | 100       |           |
| Return!                 |        |         |           |         |                 |        |       |                                | An issued  | 14.    | 848        | 4.0       | 47          |             | 4.0          | 1.6         | 4.5         |              | 4.6       |           |
|                         |        |         |           |         |                 |        |       |                                |            | 9.05   |            | 845       | 6.00        |             | 16.0         | 9.05        | 1.86        |              | 1.09      | 1.86      |
|                         |        |         |           |         |                 |        |       |                                |            | 8.7    | 66         | 40        | 0.0         |             | 38.0         | 40          | 868         |              | - 18.6    | 40.4      |
|                         |        |         |           |         | 160             |        |       |                                |            | and.   | 184        | 96.0      | 40.0        |             | GR.10        |             | 180.8       |              | 16.0      | 47.6      |
|                         |        |         |           |         |                 |        |       |                                | - Followed | 960    | W15        | 49.6      | 80.8        | 0.34        | min          | - 06        | 1000        | 66           | 10.4      | 900       |
|                         |        |         |           |         |                 |        |       |                                |            | 160    | 5.00       | 4.98      | 9.09        | 10.00       | 40.0         | 819         | 9.04        |              | 6.00      | 3.60      |
|                         | PH.    |         |           |         |                 |        |       | 100                            |            | 80.0   |            | 94.0      |             |             | -            |             | 400         |              | **        | 160       |
|                         |        | 46      |           |         |                 |        |       |                                |            | 904    |            | 25.0      | -04.6       |             | - 4"         | **          |             |              |           | 200       |
|                         |        |         |           |         |                 |        |       |                                |            |        |            |           |             |             |              |             | 0.0         |              |           |           |
|                         |        |         |           |         |                 |        |       |                                |            | 34     | fig.       | 40        | 9.6         |             |              | 48          | 9.6         |              | 5.6       | 5.6       |
| Nigeri -                |        |         |           |         |                 |        |       |                                |            |        |            | 4/8       | 2.00<br>9.0 |             |              | 3.00        | 144         |              | 130       |           |
|                         |        | 88.6    | 64        |         | 4.6             |        |       |                                | (tripped)  |        | 180        | 4.0       |             | Mod         | 4.0          | 6.0         |             | 47           |           | 44        |
| Warri .                 |        |         |           |         |                 |        |       |                                |            |        |            | 4.00      |             |             | 0.90         |             |             |              |           |           |
|                         |        | 4.0     |           |         |                 |        |       |                                |            |        |            |           |             |             |              |             |             |              |           | 4.8       |
| Yellow                  |        |         |           |         |                 |        |       |                                | Flore      |        |            |           |             |             |              |             |             |              |           |           |
| (nam)                   |        |         |           |         |                 |        |       |                                | Strawn.    |        |            |           |             |             |              |             |             |              |           | - 190     |




Preliminary geological maps



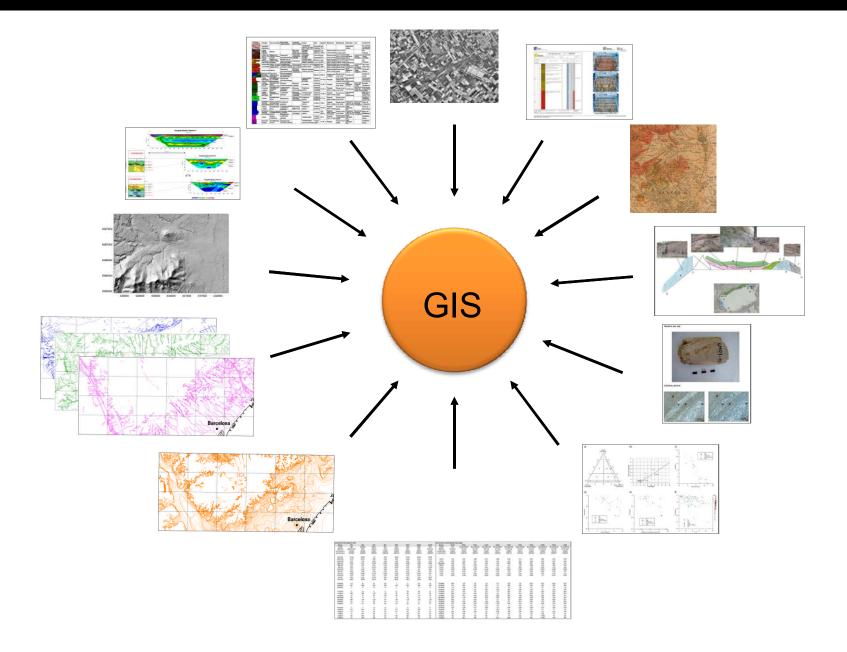
Other complementary works



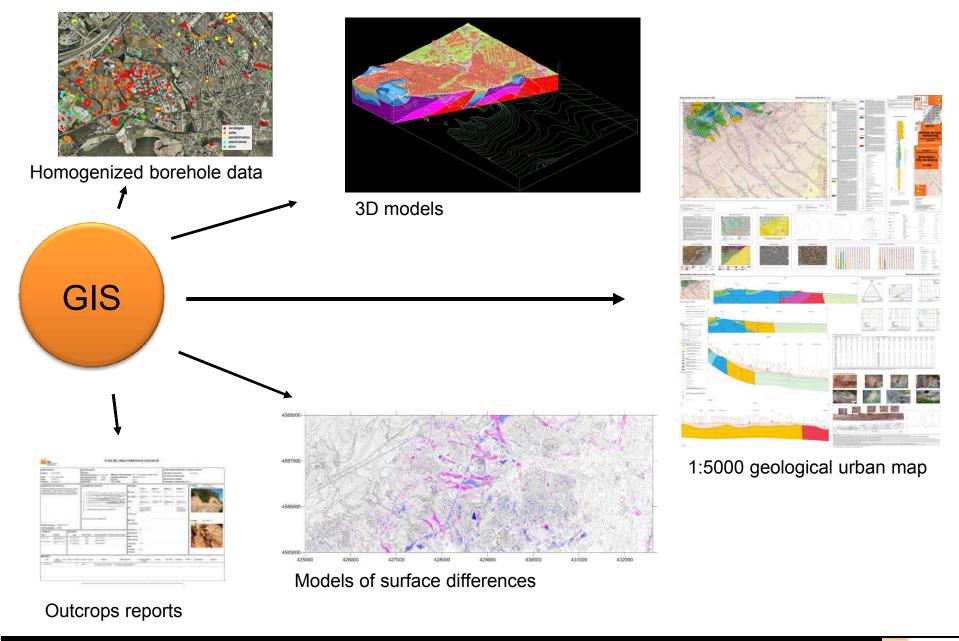


- Definition of the operative geological units
- Homogenization of borehole, outcrops and sample data
- Improve of the geological maps



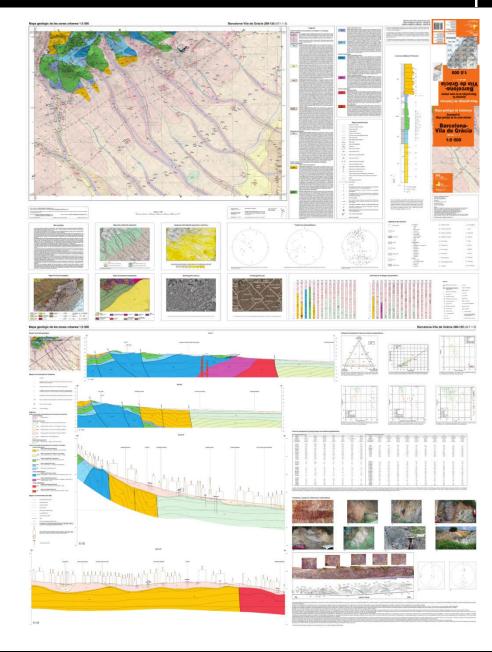

3D modelling

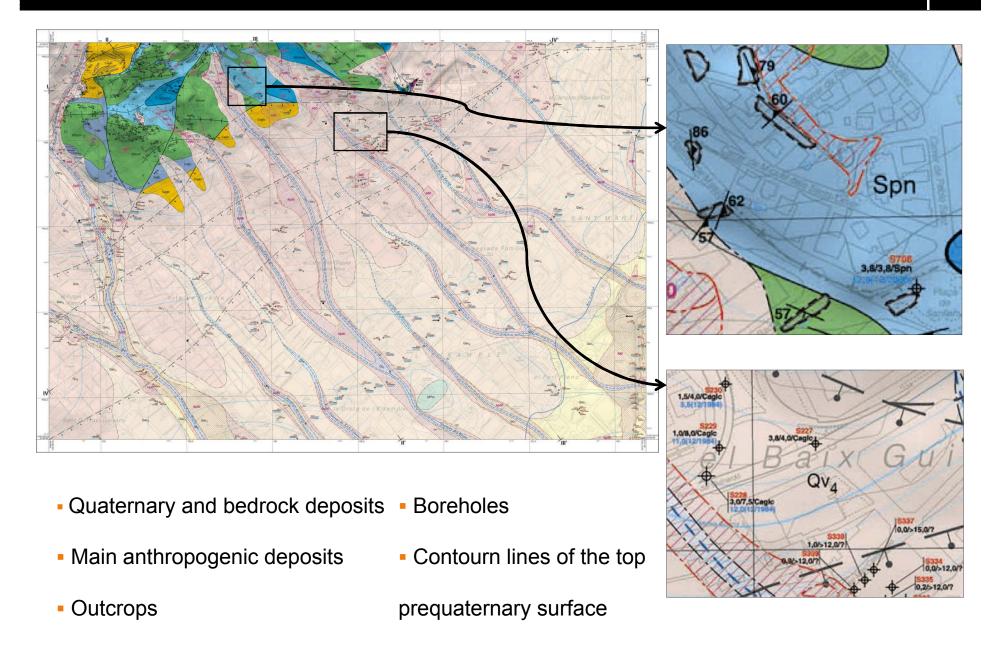



Systematic geological unit characterization

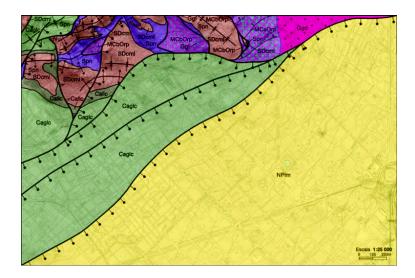
| Jnidedes<br>artográfosa | Litología                                 | Discontinuidades                                      | Estructures<br>sedimentarias                                 | Contanido                                     | Festion                                                   | Edet                             | Espeate       | Estuctura                                | Resistancia                                         | Alteración                                       | Uso                                  | Localización                                |
|-------------------------|-------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------|---------------|------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------------|
| 1/10/10                 | Dépôsitos<br>antrópicos                   |                                                       |                                                              |                                               | Terragiones<br>relionce de value                          | Reciente                         | 16 m          |                                          |                                                     | Adeptedión<br>relieve                            |                                      | Riu Francis<br>Phropasa da<br>conuntración  |
|                         | Lutter<br>premie<br>y graves              | Masiva                                                |                                                              | Motuscos,<br>rectos de<br>naturio sepinica    |                                                           | Customens<br>Holocono<br>Heavens |               | carrillus bilandes                       | may fige-media                                      |                                                  | 1                                    | Plu<br>Francoli                             |
|                         | Lufften con-<br>retein ynnetes<br>Graves  | Miselva con<br>cationes rocceon<br>a muro             | Secuencia<br>granodecrestente                                | Vacimiento<br>vertebrados<br>la Boella        | Cokryleins<br>attyrisks<br>Tuytelss                       | Customers                        |               |                                          | Suero smywodel<br>Roje-muy dwose<br>Rosses blancker |                                                  | Communitie<br>Archier<br>Graverse    | Les Georges<br>Torres<br>Cavades            |
| THE STATE OF            | Luttes<br>areniscas y                     | Mesiva con<br>paleocanales<br>incididos               | Nivelies dri de<br>résites certenditos<br>entre les juilles  | Travertinos                                   | Continentales<br>abanicos aruvalos<br>distates y paluetes | Micceno                          |               | Subhoncortal services into vice          | freedom a tree<br>moderad, duran                    | Ped stencer                                      |                                      | Lee<br>Gavarres                             |
| 74                      |                                           | Maskis, en marco<br>medide, estratif-<br>cación des-m | Estratificación<br>cruzada y ondolada<br>Laminación pamisia  | forarrindaren                                 |                                                           | Miccorro                         | Max.          | cartifica inference                      | Roces dures                                         | attention 2-bin                                  | Pedra<br>dei Middel                  | Sant Para<br>I Sant Pau                     |
| 49.0                    | Congression                               | Masive                                                | Secuencia<br>granodecrecienta                                | Molyscos,<br>equividos<br>verteficados        | Markres, absoluces<br>contente provinces                  | Miccens                          | 5-30 m        | Subhorizontal<br>falles normales         | Roces transes-<br>duras                             | Porti<br>atteración<br>2-3 m                     | Ornamental<br>Pedra<br>d'Alplena     | Punta del<br>Mirade                         |
|                         | Bioques de<br>dolorvias<br>calms y Littus | bréchica muy                                          | Bioques decemetri-<br>ons a hecturolificos<br>del Mescarolco |                                               |                                                           | Micourus                         | 5-60 m        | Destromments<br>o Alppes                 | Roces dures<br>muy dures                            | Cantificación                                    |                                      | Ermits del<br>Licetto                       |
|                         |                                           | Estratificación<br>m y cruzada<br>Base erontya        | Secuencias<br>granodecedentes                                |                                               | Gurtipertales<br>strancos<br>sicviales                    | Paledgeno<br>Palessano           | 36-100 m      | Plegada                                  | Sale orecas<br>firme-rocas<br>moderad, duran        | 3 mi                                             |                                      | Certificates<br>Autovia (A-7<br>Jone Storon |
|                         | Celizas<br>con luttas<br>a muro           | Estratificación<br>dm-m<br>tableada a muro            | Breches<br>Intraformacionales                                | Moluscos<br>Caroffina                         | Lacustres                                                 | Crestocion                       | 12-40 m       | Piegeds                                  | House blendar-<br>thuy duries                       | Porti<br>alteración<br><1-2 m                    | Omamente<br>Pedra de<br>LLiede       | Muralias<br>Terragona                       |
|                         | Dolomias<br>y caltras                     | Estradificación<br>ondulesta<br>dm-m                  | Laminaciones.<br>carriolas y<br>esticitos                    | Moluscos<br>Foraminiferos                     | Piataforna<br>marina                                      | Christops<br>Turnierae           | 45-52 m       | Piegada<br>teles normales                | Roces dures-<br>muy dures                           | Carelficación                                    | Ornamental<br>Pedra de<br>Sente Teda | tio Sant Pay                                |
|                         | Cutton,<br>cuton y<br>provinces           | Masive a<br>estratificación<br>dm                     | Laminación<br>paraleix                                       | Molyecos,<br>foramin/feros<br>y peloides      | Transicionales<br>y continental                           | Cestacico                        | 10-56 m       | Plegeda<br>faltes normales               | Roces blendan-<br>dures                             | Pert alwards<br>3-4 m<br>Destarrentes            |                                      | Mas Enricy<br>Conviers<br>exems Lions       |
| COM                     | Caltres                                   | Estradificación<br>dm-m                               | Bioturbeción                                                 | Muturcox, styre<br>equividos<br>foremin/ferce | Piateforma<br>merina                                      | Creticion                        | 8-13 m        | Plagada<br>tatas normales                | Rocas duras<br>muy duras                            |                                                  |                                      | Corretors<br>Corretors                      |
|                         |                                           | Mestra y tréctica<br>purrusimente<br>estrat, cm-dm    | persiella                                                    |                                               | Plataforma<br>marins                                      | Juntaico                         | 150 m         | Plegada<br>tatas rormales                | Roces duras-<br>muy duras                           | Ppiockarut<br>y karetidm, can<br>refere de finos |                                      |                                             |
|                         | Celtras<br>y luttas                       | Estratificación<br>dm-m                               | Laminación paneles<br>y eletructura<br>modulosa              | Ammonitus<br>Belamvitas                       | Piataforna<br>marina                                      | Jurásico<br>Rejoleres            | 25-35 m       | Plegeda<br>falos inversas                | Ploces blanders<br>durant                           | Perfi<br>alteración<br>Z m                       |                                      | Portal de<br>Sant Anton                     |
|                         | Dolomias y<br>taucissa<br>dolomiticas     |                                                       | Laminación parallela<br>y cruzada<br>Bioturbación            | Pelades orabes<br>Crincideos                  | Pieteforne<br>merins                                      | Juntaico                         | 120-<br>200 m | Plegade<br>tales normales<br>a investure | Roose dunes<br>muy dunes                            | Palookant<br>y kant dr. sor<br>want de lino      |                                      | Balcó del<br>Mediterran                     |
| -                       | Lutter                                    | Masive<br>y brichica                                  | Laminación<br>paralela                                       |                                               | Continentales                                             | Trásico<br>superior              | 25 m          | Plegada<br>teles nomeles                 | Rocas Standar-<br>moderationents<br>duran           | Perfi                                            |                                      | Arrifteatre<br>Roma                         |
| 計                       | Dolomias<br>luttices                      | Estratificación<br>cm-dm                              | Biolumención<br>terrinación pereiota                         |                                               | Transitionales<br>marino-confinantal                      | Trásico<br>medio                 | 17-30 m       | Plegada                                  | Piccos blandan-<br>duras                            | Porti<br>altersolon<br>2 m                       |                                      | Amfiteatre<br>Romá                          |



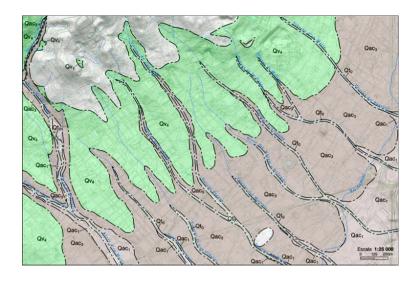




IGC Institut Geològic de Catalunya

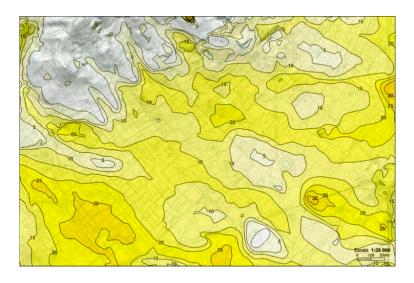



# THE 1:5000 SCALE URBAN GEOLOGICAL MAP OF CATALONIA PRODUCT

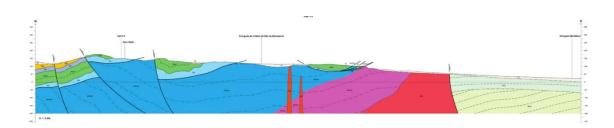
- Main map of 8 km²
- Several complementary elements related to the map area
- The content may change depending on geological features and available data



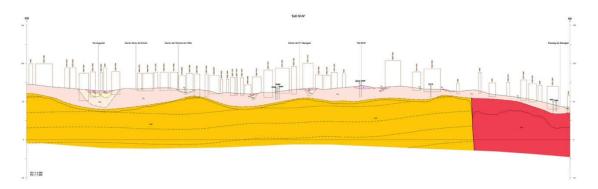




## Bedrock map

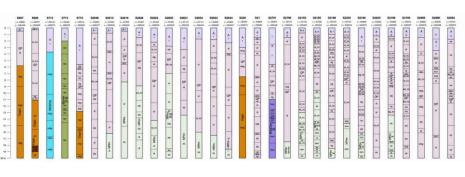



## Quaternary deposits map

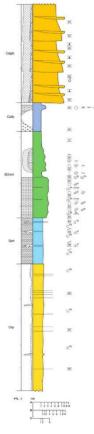



## Model of thickness of artificial and quaternary deposits





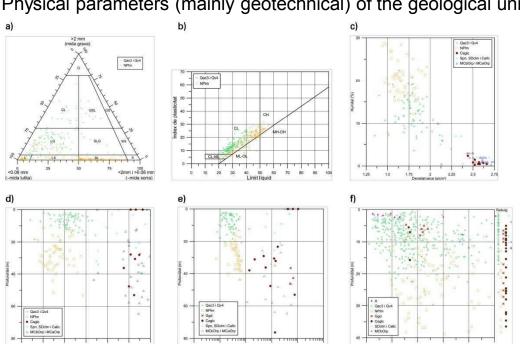




#### Detailed cross section

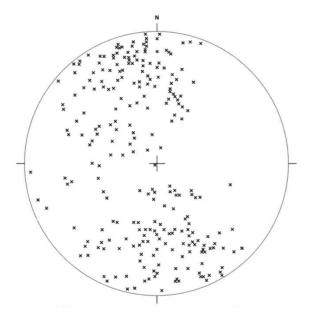


#### Harmonized borehole logs




Simplified lithostratigraphic section




Geochemical composition of representative rocks sediment and topsoil samples

| ncentració total (di               | gestió total)   |         |             |             |         |                  |          | Concentració parcial | (digestió Aqua Regla) | 0               |                 |                  |                 |                 |                 |                 |                 |               |
|------------------------------------|-----------------|---------|-------------|-------------|---------|------------------|----------|----------------------|-----------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|
| Mostra                             | E5315           | E5542   | E5540       | E5093       | E5147   | E5352            | E5164    | Mostra               | M513                  | M508            | M509            | MS10             | MS11            | M512            | MS18            | M519            | MS20            | MS17          |
| Unitat                             | Qv <sub>4</sub> | Mcborp  | MCaOrp      | Cagic       | Cagic   | Cagic            | SDcmi    | Unitat               | Sel Superficial       | Set Superficial | Sol Superficial | S-61 Superficial | Set Superficial | Sel Superficial | Sit Superficial | Sit Superficial | Sel Superficial | Sitt Superfic |
| Material                           | sediment        | pelica  | corniana    | gres        | gres    | microconglomerat | calcária | Material             | sauló                 | sediment        | sediment        | sediment         | sediment        | sediment        | sediment        | sediment.       | sediment        | sediment      |
| Coordenada x                       | 429630          | 430782  | 430630      | 428884      | 428936  | 428911           | 430351   | Coordenada x         | 430860                | 432073          | 430973          | 430302           | 430328          | 430857          | 429443          | 429303          | 429242          | 429476        |
| Coordenada y                       | 4585500         | 4585273 | 4585307     | 4584534     | 4585521 | 4585273          | 4585431  | Coordenada y         | 4585305               | 4583943         | 4583930         | 4584035          | 4585084         | 4585331         | 4585281         | 4585555         | 4585439         | 4585309       |
| sio, (%)                           | 32,56           | 69,08   | 57,92       | 70,21       | 72,44   | 79,18            | 12,57    |                      |                       |                 |                 |                  |                 |                 |                 |                 |                 |               |
| Al <sub>2</sub> O <sub>2</sub> (%) | 7,25            | 13,58   | 20,96       | 12,52       | 12,2    | 7,34             | 3,01     | AI (%)               | 1,33                  | 2,63            | 1,92            | 1,73             | 1,54            | 3,12            | 1,68            | 2,63            | 0,0             | 1,6           |
| Fe <sub>2</sub> O <sub>3</sub> (%) | 2,83            | 4,75    | 6,91        | 4,85        | 4,63    | 3,49             | 4,64     | Fe (%)               | 1,85                  | 3               | 2,59            | 2,36             | 2,55            | 6,94            | 2,37            | 13,2            | 3,14            | 2,27          |
| MnO (%)                            | 0,062           | 0,005   | 0,051       | 0,058       | 0,049   | 0,077            | 0,536    | Mn (ppm)             | 412                   | 549             | 497             | 460              | 761             | 270             | 563             | 2600            | 4180            | 363           |
| MEO (%)                            | 1.13            | 0,98    | 2.4         | 1,55        | 1,4     | 0,99             | 11,25    | Mg (%)               | 0.31                  | 0.78            | 0.78            | 0.6              | 0,78            | 0,58            | 0,72            | 1,3             | 4,27            | 0,45          |
| CaO (%)                            | 26,65           | 0,4     | 0,25        | 1,02        | 0,46    | 1,62             | 29,82    | Ca (%)               | 0,42                  | 8,09            | 3,93            | 2,36             | 6,35            | 5,93            | 2,9             | 8,07            | 12,3            | 3,02          |
| Na <sub>2</sub> O (%)              | 0,69            | 0,09    | 0,33        | 1,91        | 1,64    | 1,41             | 0.07     | Na (%)               | 0,076                 | 0.057           | 0,12            | 0,074            | 0,058           | 0.091           | 0,072           | 0,041           | 0,025           | 0,028         |
| K <sub>2</sub> O (%)               | 1,38            | 4,26    | 4,55        | 2,22        | 2,15    | 1,06             | 0,64     | K (%)                | 0,27                  | 0,53            | 0,58            | 0,44             | 0,44            | 0,79            | 0,4             | 0,55            | 0,25            | 0,38          |
| TiO2 (%)                           | 0,416           | 0,516   | 0,928       | 0,738       | 0,714   | 0,402            | 0,178    | Ti (%)               | 0,02                  | 0,07            | 0,09            | 0,07             | 0,06            | 0,03            | 0,09            | < 0,01          | < 0,01          | 0,01          |
| P,O, (%)                           | 0,09            | 0,28    | 0.16        | 0.1         | 0,12    | 0,07             | 0,09     | P (%)                | 0,038                 | 20,0            | 0,177           | 0,111            | 0,153           | 1,07            | 0,077           | 0,195           | 0,085           | 0,074         |
| LOI (%)                            | 26,38           | 3,33    | 4,2         | 3,18        | 2,89    | 2,87             | 36,45    | 57/48/67             |                       |                 |                 |                  |                 |                 |                 |                 |                 |               |
| Total (%)                          | 99,43           | 97,25   | 98,66       | 98,35       | 98,7    | 98,51            | 99,24    |                      |                       |                 |                 |                  |                 |                 |                 |                 |                 |               |
| As (opm)                           | 16              | 186     | 7           | 4           | 27      | 14               | 21       | As (opm)             | 0,2                   | 12,8            | 5,6             | 2,3              | 16,3            | 19,7            | 13.7            | 117             | 52,7            | 31,9          |
| Da (ppm)                           | 464             | 9696    | 998         | 525         | 503     | 385              | 266      | Da (ppm)             | 88,9                  | 202             | 273             | 208              | 322             | 196             | 408             | 557             | 907             | 300           |
| Be (ppm)                           | 2               | 4       | 3           | 2           | 2       | <1               | <1       | Be (ppm)             | 0,8                   | 1,2             | 0,8             | 0,6              | 1               | 2,7             | 8,0             | 3,7             | 1,2             | 1,1           |
|                                    |                 |         |             |             |         |                  |          | Cd (ppm)             | 0,0%                  | 0,26            | 0.38            | 0,2              | 1.5             | 0,34            | 5,28            | 3,35            | 0,47            | 1,55          |
| Co (ppm)                           | 3               | 5       | 15          | 12          | 11      | 8                | <1       | Co (ppm)             | 3,7                   | 12,4            | 8,6             | 6,7              | 10,2            | 32              | 12,6            | 88,88           | 27,2            | 9,2           |
| Cr (ppm)                           | 40              | 160     | 100         | 70          | 90      | 60               | 20       | Cr (ppm)             | 51,1                  | 53,1            | 53,7            | 17,9             | 53,5            | 60,5            | 50,3            | 34,8            | 16,1            | 50            |
| Cu (ppm)                           | 40              | 150     | 30          | 20          | 10      | 20               | 60       | Cu (ppm)             | 7,33                  | 60,2            | 53.2            | 39,1             | 95,8            | 189             | 60,4            | 209             | 111             | 136           |
| Mo (ppm)                           | <2              | 17      | ≪2          | < 2         | 4       | 3                | 2        | Mo (ppm)             | 3,06                  | 2,18            | 3,67            | 0,93             | 4,37            | 10,2            | 6,15            | 17,7            | 5,83            | 25,2          |
| Ni (ppm)                           | 30              | 50      | 40          | 30          | 50      | 30               | 90       | Ni (ppm)             | 4,6                   | 38              | 22,1            | 12               | 31,7            | 58,6            | 31,4            | 646             | 106             | 64,2          |
| Pb (ppm)                           | 7               | 1230    | 16          | < 5         | 7       | 6                | 14       | Pb (ppm)             | 147                   | 45,6            | 92,4            | 49,2             | 141             | 103             | 169             | 104             | 23,9            | 105           |
| 5b (ppm)                           | < 0,5           | 10,1    | < 0,5       | < 0,5       | < 0,5   | < 0,5            | 8,0      | Sb (ppm)             | < 0,02                | 0,92            | 0,86            | 0,47             | 1,69            | 3,3             | 1,15            | 3,66            | 1,73            | 3,33          |
| 20000000                           | 245             | 400     | 92          | 200         | 100     | - 4              | 102      | Se (ppm)             | 0,5                   | 0,5             | 0.7             | 0,3              | 0,8             | 4,8             | 1,2             | 6,3             | 2,1             | 5,2           |
| Sn (ppm)                           | 4               | 4       | 6           | 4           | 4       | 3.               | 2        | Sn (ppm)             | 1,51                  | 2,26            | 2,54            | 2,33             | 3,79            | 0,55            | 2,1             | 1,25            | 0,47            | 1,59          |
| Th (spm)                           | 8.2             | 10,5    | 16,2<br>0,6 | 10,2<br>0,4 | 10,5    | 5,8              | 2,7      | Th (ppm)             | 16,1                  | 6,3             | 6,1             |                  | 4.2             | 7,7             | 9,4             | 4,1             | 1,1             | 2,1           |
| TI (apm)                           | < 0,1           |         | 0,6         | 0,4         | 0,4     | 0,2              | 0,2      | TI (ppm)             | 0,11                  | 0,25            | 0,25            | 0,21             | 0,36            | 1,28            | 0,37            | 1.91            | 1,04            | 0,97          |
| U (ppm)                            | 2,8             | 21,1    | 3,4         | 3.1         | 2,9     | 1.7              | 1        | U (opm)              | 1.2                   | 0.8             | 1               | 1                | 1.2             | 12.1            | 1,7             | 4,6             | 1               | 4,9           |
| V (ppm)                            | 97              | 1769    | 150         | 91          | 86      | 57               | 35       | V (ppm)              | 23                    | 59              | 56              | 54               | 63              | 238             | 72              | 115             | 58              | 154           |
| In (ppm)                           | 50              | 1510    | 390         | 90          | 60      | 70               | 2530     | Zn (ppm)             | 67                    | 124             | 160             | 127              | 383             | 116             | 1010            | 1490            | 103             | 279           |

Physical parameters (mainly geotechnical) of the geological units



Stereographic projections of the main discontinuities and structures



## Photography gallery





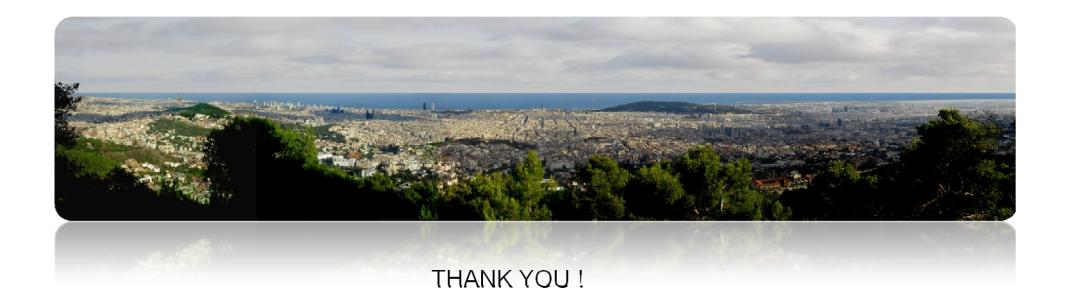











## **RESULTING MAP SHEET** AND BINDING COMPONENTS Legend (petrologic, ◄ geotechnical and genetic) Geological setting ■ 1:100.000 geological map ◆ 1:100000 schematic geological map

## **CONCLUSIONS**

The 1:5000 urban geological map of Catalonia

- systematic urban mapping survey
- self-consistent database
- wide range of uses
- update required

World wide applicability

