

EO-MINERS

Geological

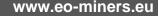
urvev

TEL AVIV UNIVERSITY

oram

TOWARDS SUSTAINED AND ACCEPTED GEO-SPATIAL **INFORMATION PRODUCTS** FOR MINING AND **RESOURCES MANAGEMENT**

Chevrel Stephane, Henk Coetzee, Eyal Ben-Dor, Christoph Ehrler, W. Eberhard Falck, Christian Fischer, Colm Jordan, Gregoire Kerr, Veronika Kopackova, Ernis Kylychbaev, Philipp Schepelmann, Solar Slavko, Simon Adar, Katerina Zelenková


http://www.eo-miners.eu

Wuppertal Institute

kolovská uhelná, právní nástupce, a.s. SOKOLOV

Project Structure

- Funding Instrument: CP-SICA-FP7 7
- Total Project Costs: 4.062.877 € 7
 - 3.120.837 € EC Contribution:
 - Duration: 36 months
 - Consortium: 14 partners,
 - 8 countries
 - Coordinator:
- Start Date: 7

7

- BRGM (France)
- 01 Feb. 2010

kolovská uhelná, právní nástupce, a.s.

Content

 \odot Introduction

 \odot Developing Indicators

 Remote Sensing based application development for the three test sites

Standards & Protocols for Remote Sensing based
Product development

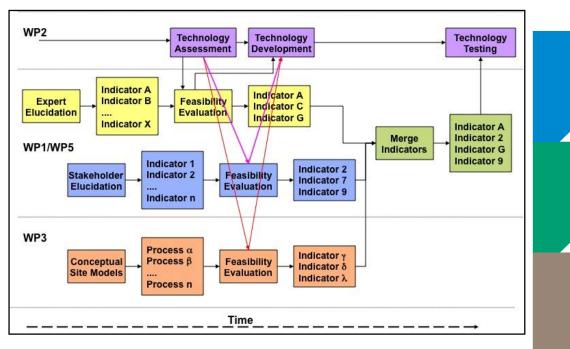
○ Conclusion & Outlook

Scientific Objectives

Assess policy requirements at macro (public) and micro (mining companies) levels and define environmental, socioeconomic, societal and sustainable development criteria and indicators to be possibly dealt using EO demonstrate the capabilities of integrated EO-based methods and tools in: • monitoring,

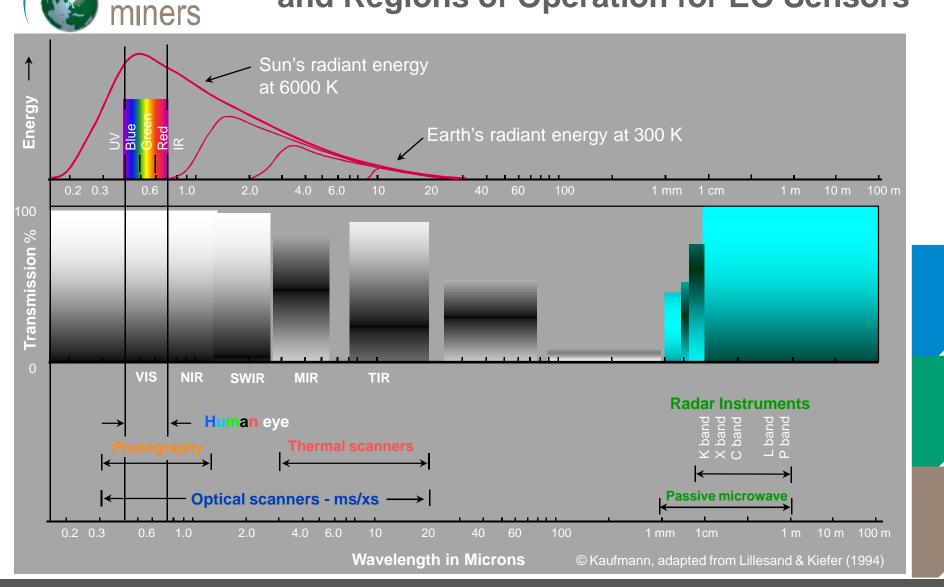
- monitoring
- managing

 contributing reducing the environmental and societal footprints of all phases of a mining project Contribute making reliable and objective information about affected ecosystems, populations and societies, basis for a sound "trialogue" between industrialists, governmental organisations and stakeholders


WP1 WP2, WP3 WP4, WP5

Developing Indicators

- A multi-pronged, iterative approach is used:
 - heuristic set of candidate indicators by expert elucidation
 - examination of site-specific conceptual models for the study sites
 - a semi-deliberative approach with input from outside stakeholders
- The resulting candidate set was tested during stakeholder interviews
- The indicators are checked for measurability by EO-experts
- The final set of indicators will be subject to stakeholder evaluation during site workshops at the end of the project.


Candidate Indicator Categories

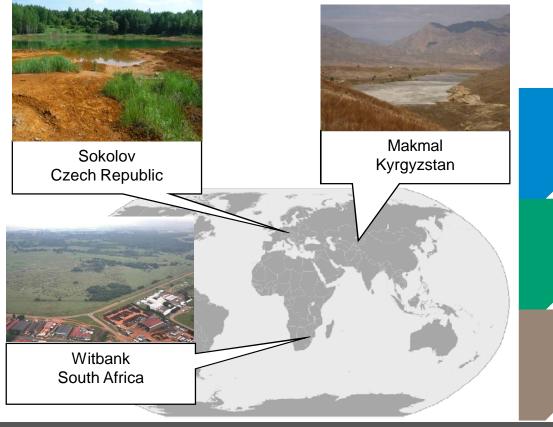
- A Land-use
- B Mass Flows
- C Energy Flows
- D Air quality and other nuisances
- E Water quality
- F Transport
- G Geotechnical hazards and accidents
- H Industrial and other accidents
- I Social impacts
- J Regional development
- K Economic vulnerability/resilience

Blackbody Radiation, Atm. Transmission and Regions of Operation for EO Sensors

Czech Republic - Sokolov mining area:

- area is largely affected by lignite mining activities: open casts, closed mines and dump sites
- acid mine drainage (AMD) and related heavy metal contamination

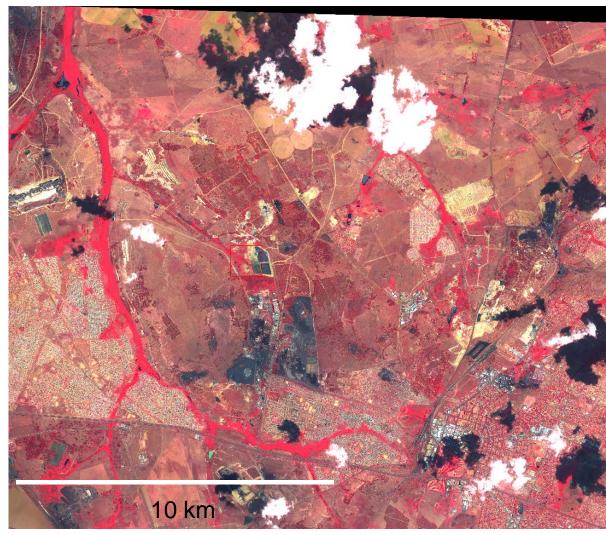
South Africa - Witbank coalfields:


- major impact of mining due to land degradation and water pollution
- collapsed abandoned underground mine sites have undergone spontaneous combustion

Kyrgyzstan - Makmal gold deposit:

 necessity of a regular monitoring of soil and water on heavy metals content

Test Sites


• impact zone of a tailing dump

eMalahleni – Mpumalanga province

High resolution satellite data: WorldView-II

bands:

1 panchromatic (pan) 8 multispectral (ms) (VIS, SWIR)

sensor resolution (GSD) pan: 0.46 m GSD at nadir ms : 1.8 m GSD at nadir

dynamic range 11-bit

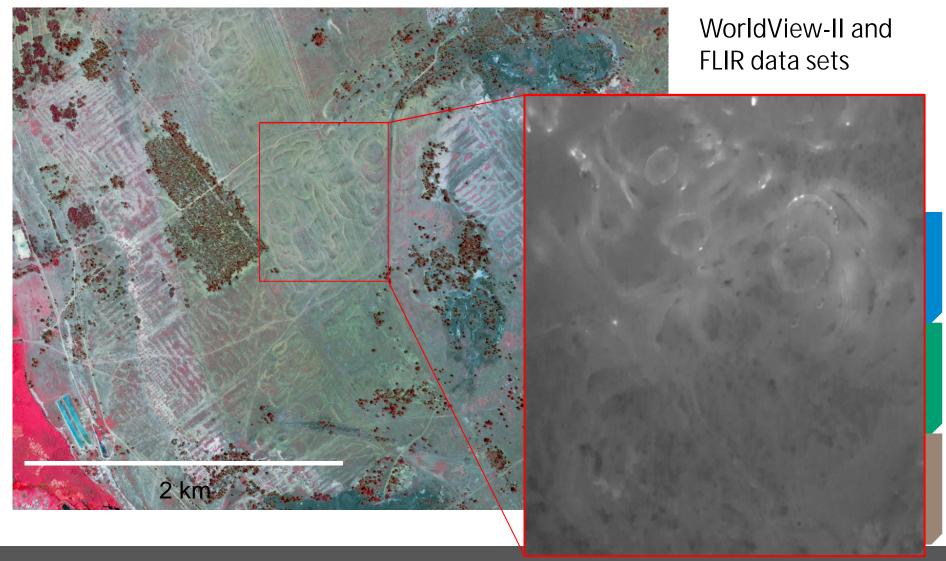
swath width 16.4 km at nadir

eMalahleni - South Africa

Abandoned and active mine sites in close neighborhood of urban settlements:

- unpredictable surface movements
- spontaneous coal fires and acid mine drainage (AMD)

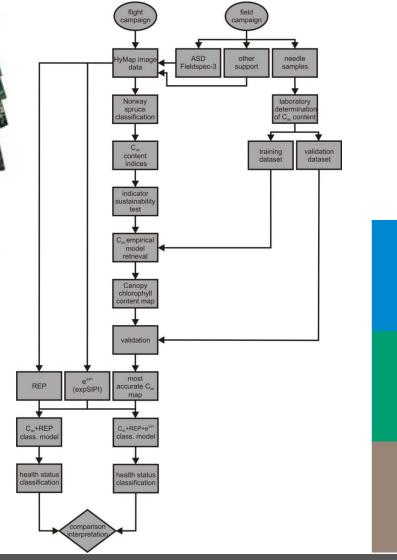
Coal Fire related Temperature Anomalies


Thermal night time Survey using a Matrix Detector: FLIR P640 640 x 480 Pixels, [-40 – 500°C] 16 bit quantification, +/- 0.03 °C sensitivity 7.5 to 13 µm spectral range, GSD ~ 2m

Abandoned Mine Sites and Coal Fires

Sokolov – Czech Republic

Acid Mine Drainage (AMD), related heavy metal contamination and influenced vegetation health status 0 2 Kilomètres

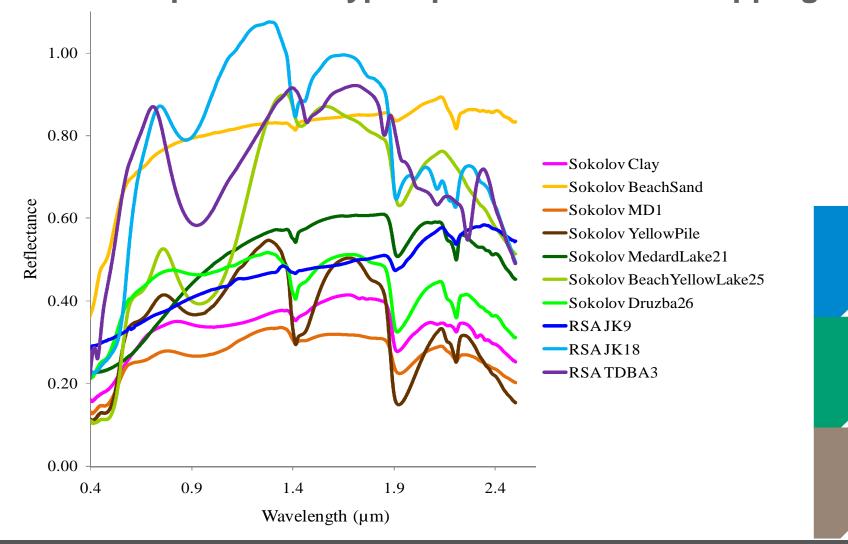



- Ø Chlorophyll (C_{ab)} retrieval
- C_{ab} integrated together with other parameters derived from the HyMap multi-flight line data to assess subtle changes in physiological status of macroscopically undamaged foliage of Norway spruce

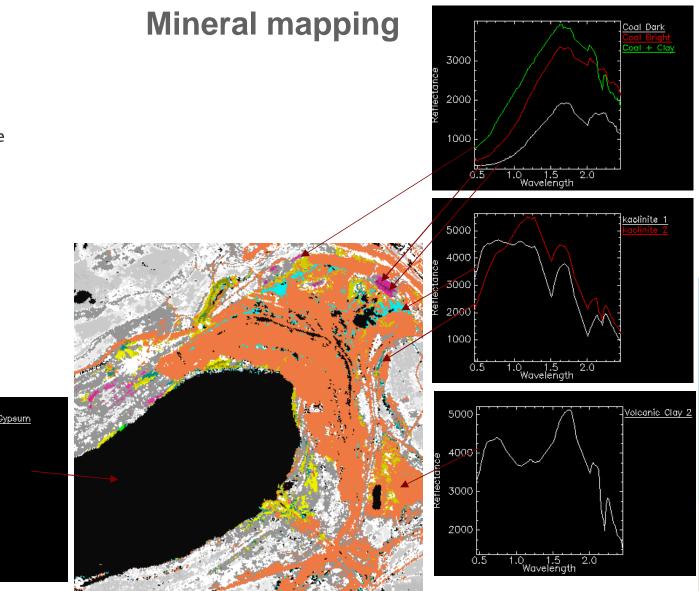
Vegetation mapping

Vegetation mapping

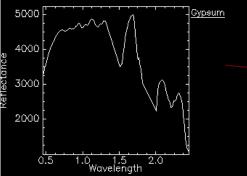
Statistical classification of Norway spruce health status by integrating the indicators C_{ab} , REP and expSIPI.


Color scale 1-5 – health status classes for the trees without visual damage symptoms

1 - the worst and 5 - the best result

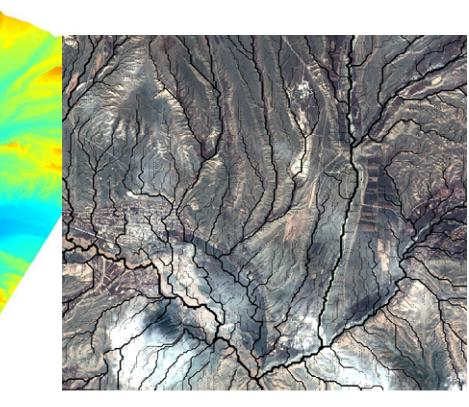


Reflectance spectra VIS-NIR-SWIR reflectance spectra for hyperspectral thematic mapping



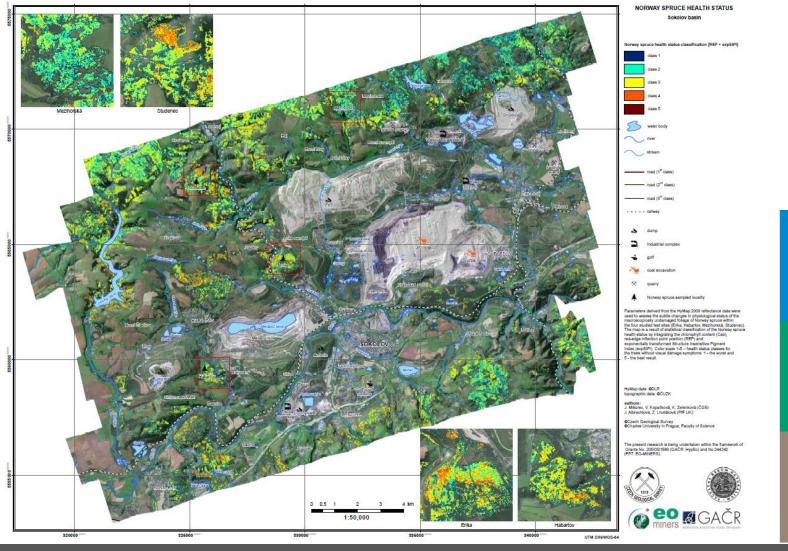
Kazarman – Kyrgyzstan

Existing tailing pond: Investigation to secure ground-water resources:


- Modeling of potential surface and subsurface flow directions
- taking dust samples and
- spectradiometric measurements of the tailings and from soils on different locations

Calculating Flow Accumulation

WorldView-II derived DEM and calculated Strahler network


EO product development

Environmental issues	Causes	Indicators	Measureable parameters	Potential for EO assessment of parameters	EO data availability for parameters	Task / status	Comments	Investigating institute
Water quality	AMD	Water Quality: E4 Acid drainage generation potential (distribution of sulphidic iron minerals)	Distribution of secondary iron oxide minerals	YES – Hyperspectral airborne data, ASTER or Hyperion satellite	Airborne hyperspectral available for '09,'10 and '11 (although cloudy), Landsat, AVNIR-2 and some ASTER imagery	Selected AMD- related minerals can be mapped	Selected AMD-related minerals can be mapped. Map scale?	DLR and TAU and BGS
			Surface drainage map	YES – SRTM, LiDAR or elevation derived from stereo airborne photography or satellite imagery such as ASTER	5 m DEMs derived from Cartosat stereo images (although not validated) and some ASTER imagery	Raw DEM exists	Ideally a hydrologically correct DEM is needed (calculation: ArcGIS), dGPS data required	Czech Geological Survey, BGS
			Groundwater table and flow directions	YES – ground network required unless regional scale when GRACE satellite data could be utilised. ALERT	No suitable data available yet(?)	topographic information exists	Difficult to model - Is there a ground water model available?	?

EO product development

Standards & Protocols

Standards

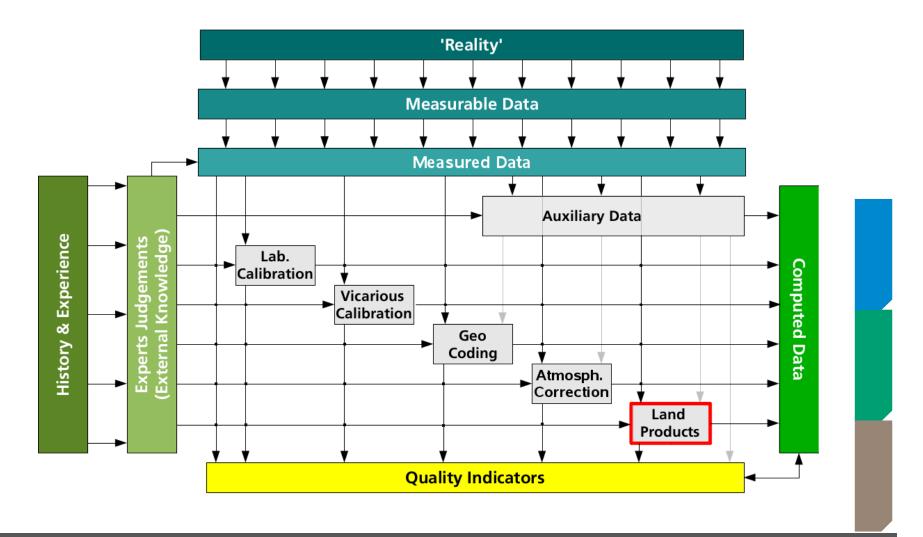
- are a pre-requisite for quantitative analysis and have to be traceable to (inter)national calibration standards, e.g. ISO TC 2011 or DIN/EN
- simplify the processing chain and data exchange
- allow maintenance, evolution and checks of results

Accomplished

- standardized preprocessing of reflective & thermal imagery
- homogeneous database of reference measurements following agreed standards and protocols
- harmonization with & extension of existing quality indicators/ quality layers
- in-line with current standardization activities, e.g. EUFAR, CEOS

Ongoing Activities

- improvement of processing work-flow, including airborne TIR data
- definition of TIR quality layers & combination with reflective quality layers
- definition of data products, including meta-information, referenced to existing standards to support multi-sensor applications and combination of data from the reflective and thermal domain.


Standards & Protocols

Parameter	Recommended usage	Report format	-	Validity (processing level)	Dissemination	Status	Comment
		(T)ext report (I)mage flags	(P)ixel (L)ine (C)olumn (B)and (D)atacube	(L0) raw data (L1) radiance (L2geo) (L2atm) (L2atm+geo)	(I)nternal usage (P)ublic	(I)n use (P)reparation (N)ot started	
		Sens	or calibra	ation / Syst	tem correc	ction	
Aggregarted interpolated pixel mask ("corrected")	С	1	Р	L0, L1, L2geo, L2atm, L2atm+geo	I	I	
Aggregared bad pixel mask ("not corrected")	С	1	Р	L0, L1, L2geo, L2atm, L2atm+geo	Р	I	
	li li	mage	e data arti	facts / Pro	cesssing	errors	
Saturated pixel / overflow	С	1	Р	L0, L1, L2geo, L2atm, L2atm+geo	I	Р	
Pixels affected by saturation in preceding bands	Р	1	Р	L0, L1, L2geo, L2atm, L2atm+geo	I	N	Specific problem in frame-transfer CCDs (e.g., AISA Eagle)
		GPS	S / IMU - r	elated / Ge	eo. correct	tion	
Problems with position information	С	1	L	L2geo, L2atm+geo	Р	N	Due to rapid platform movement, no DGPS available,
Problems with altitude information	С	I	L	L2geo, L2atm+geo	Р	N	Due to rapid platform movement, no DGPS available,
Interpolated pixel during geocoding	С	I.	Р	L2geo, L2atm+geo	-	-	
Interpolated position information	Р	I	L	L2geo, L2atm+geo	-	-	Due to data gaps, erroneous signal,
Interpolated altitude information	Р	I	L	L2geo, L2atm+geo	-	-	Due to data gaps, erroneous signal,
Synchronization problem	Р	1	D	L2geo, L2atm+geo	-	-	

Quality assessment & Current Developments

Expected Results

- EO-based tools for updating geo-spatial information in mining regions, for monitoring mining related changes – and possible impacts – contributing to more sustainable extraction of natural resources
- EO techniques should be used to improve existing and often only selective approaches recording of environmental impacts. An important aspect is the development of validated data products and their acceptance by industry and supervisory authorities (standards & protocols)
- Addressing GEO (Group on Earth Observation) and GEOSS (Global Earth Observation System of Systems) process and tasks, by using project outputs to define core elements of an environmental observing system and examining how this system fits in GEO and contributes to building GEOSS

