MODELLING OF 3D GEOLOGY AND LANDSLIDE HAZARD IN THE LESSER HIMALAYA, CENTRAL NEPAL

P. B. Thapa, D. Arndt, A. Hoppe, R. J. Lehné

Institute of Applied Geosciences, Technische Universität Darmstadt, Germany Department of Geology, Tribhuvan University, Kathmandu, Nepal

7th EUropean congress on REgional GEOscientific cartography and Information systems

14 June 2012

CONTENTS

An brief overview of physiography, geology & landslide occurrence in the Nepal Himalaya

- 3D geological modelling of central Nepal
 Landslide hazard modelling of central Nepal
- Integration of model3D & landslide hazard/suceptibility
- Concluding remarks

Physiography and geology of Nepal Himalaya

Nelson et al. 1980

Extreme vertical variation of topography with respect to geolocal subdivisions

Occurrence of landslides & tectonostratigraphy of Nepal Himalaya

Extreme weather event of 19–21 July 1993; rainfall measured at **Tistung**, central Nepal (source: Department of Soil Conservation & Watershed Management)

Modelling site (latitudes 27°37' to 27°45' N & longitudes 84°57'38" to 85°08'2" E)

Lesser Himalaya, central Nepal

19-21 July 1993 Cloudburst & landslide damages

20 July 1993 -Site of bridge destroyed

THAN SAME

 Upstream extensive landslides
 Huge sediment transport along river course

> THE DISASTERS IN NEPAL 1993

Failure of thin soils along the dip-slopes is the most occurrences

Thin soil sliding down-slope along the dip-slope

3D geological modelling: IMPLICIT APPROACH (after Caumon et al. 2007)

GOCAD

Using following research plugins:

- GeolToolbx
- GRGLib
- IsoSurf
- SolidExplorer
- Stereonet
- StructuralLab

The coordinate system will be in meters, with *Z* positive upwards.

oir Production	Drilling	System	PCA	✓ Gocad Research 4
Select Option				Release Date
GeolToolbx				juin 2008
GRGLib				nov
✓ IsoSurf				2010
SolidExplore	r.			May 2008
Stereonet				nov
StructuralLab				May 2008

3D model configuration using GOCAD

Orientation vector (v)

 $v = \begin{bmatrix} \sin(\theta) \cdot \cos(\phi) \\ \cos(\theta) \cdot \cos(\phi) \\ \cos(\phi) \end{bmatrix}$

where, dip direction ϑ (azimuth) and dip ϕ angles

DSI (Mallet 2002) $R^*(\varphi) = \sum_{\alpha \in \Omega} \mu(\alpha) \cdot R(\varphi | \alpha) + (\phi \cdot \varpi) \cdot \sum_{c \in C \approx} \varpi_c \cdot \rho(\varphi | c)$

where, $R(\varphi|\alpha)$ is the local roughness at node α , $\rho(\varphi|c)$ is a constraint defined for node α , μ is a stiffness coefficient, and ϖ_c , ϕ . ϖ are weight coefficients

Computed stratigraphic surfaces for Model3D

3D geological model of Lesser Himalaya, central Nepal

Landslide hazard modelling using LR

If the probability of presence (1) of a phenomenon is Pa, then Pb represents the absence (0).

(i. e. Pa + Pb = 1) $P(Y) = \frac{1}{1 + e^{-Z}}$

Where P(Y) is the probability of an event occurring.

 $Z = b0 + b1A1 + \dots + bnAn$

Where, bi (i=0,1,,n) is coefficient estimated from sample data, and Ai (i=1,2, ...,n) is independent variables (i.e. landslide related physical parameters)

Logistic Regression Coefficients

Variables	Coef.	Variables	Coef.
Slope angle		Slope complexity	
<15°	-0.217	Granite slope (GS)	-1.662
15°-25°	0.074	Oblique slope (OS)	-0.349
25°-35°	0.778	$Dip-slope \ge slope (DS-EL)$	1.357
35°-45°	0.417	Dip-slope > slope (DS-G)	-0.023
>45°	-0.145	Counter dip-slope (CDS)	-0.163
Slope aspect		Fractured zone (FZ)	-1.030
Flat	-0.385	Land use	
North (N)	0.117	Forest (Fo)	1.536
North East (NE)	0.253	Shrub land (SrL)	-0.124
East (E)	0.590	Grassland (GrL)	0.880
South East (SE)	-0.177	Cultivated land (CuL)	0.657
South (S)	0.195	Barren land (BaL)	2.845
South West (SW)	-0.348	Constant	-3.640
West (W)	-0.027		
North West (NW)	0.333		
Engineering geology			
Thin soil [1-3 m] (TnSl)	-0.203		
Thick soil [>3 m] (TkSl)	-0.272		
Colluvium (Clv)	-0.876		
Alluvium (Alv)	0.240		
High Rock Mass Strength (HRMS)	-0.868		
Medium Rock Mass Strength (MRMS)	0.222		
Low Rock Mass Strength (LRMS)	1.420		

Probability calculation using logistic regression

Predicted Landslide Hazard/suceptibility Map

Integration of 3D geomodel & Landslide hazard/suceptibility

CONCLUDING REMARKS

Implicit approach of "sparse data" modelling quite illustrative to compute geologic-boundary surfaces. **4** Statistical modelling of landslide hazard is particularly suited in regional terrain of central Nepal. 4 3D geomodel and landslide hazard has provided interactive evaluation of integrated scenarios.

Thank you very much !!!