

QUADRO CONOSCITIVO

CARICHI INQUINANTI PUNTUALI E DIFFUSI APPORTATI AI SUOLI E ALLE ACQUE SUPERFICIALI E SOTTERRANEE

Coordinatore di Progetto: dott.ssa **Donatella Ferri**, responsabile CTR Sistemi Idrici della Direzione Tecnica di ARPA.

Tecnici di ARPA Direzione Tecnica che hanno curato la seguente relazione:

Capitolo 2 – La valutazione dei carichi puntuali

Pch Gabriele Bardasi, ing. Daniele Cristofori, ing. Emanuele dal Bianco, dott.ssa Eleonora Leonardi

Capitolo 3 – La valutazione dei carichi diffusi

Pch Gabriele Bardasi, ing. Daniele Cristofori, ing. Emanuele dal Bianco, ing. Paolo Spezzani

Capitolo 4 – Il trasferimento dei carichi diffusi al reticolo e agli acquiferi

Dott. Gabriele Antolini, dott.ssa Giulia Villani di ARPA SIMC

Capitolo 5 – I carichi nei corpi idrici superficiali

Ing. Paolo Spezzani

Capitolo 6 – I carichi ai corpi idrici di transizione e al mare

Ing Paolo Spezzani

Capitolo 7 – I carichi infiltrati in falda

Ing. Andrea Chahoud, dott.ssa Gisella Ferron, dott. Luca Gelati

Capitolo 8 – I confronti con il PTA 2005

Pch Gabriele Bardas, ing. Andrea Chahoud, ing. Daniele Cristofori, ing. Emanuele dal Bianco, ing. Paolo Spezzani

La cartografia digitale di supporto è stata curata da: dott.ssa **Monica Carati** e dott.ssa **Rosalia Costantino** del Servizio Cartografico della Direzione Tecnica di ARPA.

Si ringraziano per i dati e le informazioni fornite:

- Dott. **Marco Marcaccio** della Direzione Tecnica di ARPA;
- Dott **Andrea Giapponesi**, dott. **Giuseppe Carnevali**, dott. **Giampaolo Sarno**, dell'Assessorato Agricoltura, Economia Ittica, Attività Faunistico-Venatoria della Regione Emilia-Romagna.

Foto principale di copertina: Acqua trasparente del T.Silla (bacino del Reno)

Indice

1.		Premessa	1
2.		La valutazione dei carichi puntuali	2
2	2.1	Carichi provenienti dagli insediamenti urbani	2
	2.1.1	Il sistema fognario-depurativo	3
	2.1.2	Agglomerati	5
	2.1.3	Impianti di trattamento	6
	2.1.4	Carichi provenienti da reti non depurate	10
	2.1.5 perd	Metalli pesanti e sostanze pericolose (rif. "Inventario dei rilasci da fonte diffusa, scarichi e ite") in uscita dagli impianti di depurazione	11
	2.1.6	I carichi di nutrienti provenienti dagli sfioratori di piena	13
	2.1.7 piog	Piani di indirizzo per la gestione delle acque meteoriche di dilavamento e acque di prima	15
	2.1.8	Carichi dei metalli pesanti attribuiti agli scaricatori	15
2	2.2	Comparto industriale	16
	2.2.1	Aspetti metodologici e criticità	16
	2.2.2 adde	Analisi dati di consumo ed emissione per la valutazione di standard di consumo / emissione tto/unità di prodotto	
	2.2.3	Le emissioni di inquinanti	19
2	2.3	Carichi connessi all'itticoltura	20
3.		La valutazione dei carichi diffusi apportati ai suoli	22
3	8. <i>1</i>	I nutrienti apportati ai suoli dal settore agrozootecnico	22
	3.1.1	Stima del fabbisogno delle colture	22
	3.1.2	Stima del contributo da fonti di nutrienti	25
	3.1.3	Apporti al suolo da pratiche agro-zootecniche	29
	3.1.4	Surplus di nutrienti dal settore agro-zootecnico	31
	3.1.5	Carichi provenienti dal diffuso civile	32
	3.1.6	Contributi di origine naturale	32
	3.1.7	Apporti complessivi dal settore agro-zootecnico e dai suoli	33
3	3.2	Fitofarmaci apportati ai suoli	34
	3.2.1	Fitofarmaci riscontrati nelle aste fluviali regionali	34
	3.2.2	Estensione 2010 delle colture interessate dall'uso di fitofarmaci	35
	3.2.3	Stima dell'apporto alle colture dei fitofarmaci maggiormente riscontrati nei corsi d'acqua	35
3	3.3	Apporti diffusi valutati per i metalli	38
4.		Il trasferimento dei carichi di nutrienti dal suolo verso le falde e la rete minuta	40
4	1.1	Il modello CRITERIA	40
4	1.2	Impostazioni e parametri delle simulazioni	41
4	1.3	Elaborazioni sulle risultanze del modello Criteria	42
4	1.4	Il diffuso di nutrienti dai suoli montano-collinari	43

5.	I carichi nei corpi idrici superficiali	45
5.1	Il trasferimento dei carichi diffusi alla rete idrografica principale (corpi idrici)	45
5.2	Il trasferimento dei carichi puntuali alla rete idrografica principale (corpi idrici)	45
5.2.	1 L'apporto di carico dei depuratori civili ai corpi idrici	45
5.2.	2 L'apporto di carico degli scarichi industriali ai corpi idrici	46
5.3	La schematizzazione dei flussi inquinanti lungo la rete idrografica principale	46
5.3.	1 I parametri considerati	46
5.3.	2 Caratteristiche della schematizzazione	47
5.3.	3 I deflussi idrici impiegati nella schematizzazione	47
5.4	Le fonti di generazione	48
5.5 corsi d	Abbattimento sul suolo ed entro il reticolo idrografico dei principali fitofarmaci riscontrati ne l'acqua	
5.6	Taratura della schematizzazione di nutrienti, metalli e fitofarmaci	50
5.7	Le risultanze della schematizzazione	50
5.7.	1 La sottostima nella ricostruzione dell'azoto	54
5.7.	2 Rappresentazioni di sintesi	55
5.8	Carichi inquinanti veicolati valutati sulle stazioni di qualità	58
5.8.	1 Metodologia ARPA per la valutazione dei carichi	58
5.8.	2 Metodologia ISPRA per la valutazione dei carichi	59
5.9 buono	Le criticità riscontrate sui corpi idrici del reticolo idrografico che determinano uno stato "noi"	
5.9.	1 Le criticità sul LIMeco	62
5.9.	2 Le criticità sugli elementi chimici a supporto (Tab. 1/B del DM 260/2010)	66
5.9.	3 Le criticità sulle sostanze chimiche di Tab. 1/A del D. 260/2010	71
6. idrici di 1	Valutazione di apporti inquinanti da parte delle acque interne e di carichi diretti ai corpi transizione e alle acque marino-costiere	
6.1	I flussi idrici verso gli ambiti di transizione	74
6.2	Stima dei carichi in ingresso alle acque di transizione	75
6.3	Stima dei carichi immessi nei corpi idrici marino-costieri	76
7.	I carichi infiltrati in falda da suolo e da Corpo idrico superficiale	79
7.1	Carichi di nutrienti infiltrati in falda dal suolo	79
7.2	Carichi di nutrienti infiltrati in falda da cis	82
7.3	Confronto del carico di azoto in ingresso alle acque sotterranee con i dati del monitoraggio	83
7.3.	1 Confronto per le conoidi alluvionali appenniniche	83
7.3.	2 Confronto per l'acquifero freatico di pianura	86
7.4	Fitofarmaci distribuiti ai suoli e apportati in falda	87
7.5	Le criticità riscontrate sui corpi idrici sotterranei che determinano uno stato "non buono"	88

1. PREMESSA

In questo documento sono riportati in sintesi i risultati dell'attività di aggiornamento delle stime dei carichi inquinanti veicolati verso i corpi idrici regionali (Pressioni/impatti) condotta partendo dall'analisi delle sorgenti di generazione (Determinanti) e avvalendosi, laddove necessario, dell'uso di modelli matematici specifici.

L'analisi è articolata nei punti seguenti:

- a) valutazione dei carichi puntuali;
- b) valutazione dei carichi diffusi apportati ai suoli;
- c) trasferimento dei carichi di nutrienti dal suolo verso le falde e la rete minuta;
- d) carichi nei corpi idrici superficiali;
- e) apporti inquinanti da parte delle acque interne e di carichi diretti ai corpi idrici di transizione e alle acque marino costiere;
- f) carichi infiltrati in falda da suolo e da corpo idrico superficiale (CIS);

2. LA VALUTAZIONE DEI CARICHI PUNTUALI

Per la valutazione dei carichi inquinanti puntuali l'attenzione è stata focalizzata sui seguenti punti:

- carichi domestici/industriali che recapitano in fognatura;
- carichi provenienti dal settore produttivo/industriale che sversano in corpo idrico superficiale.

La Regione Emilia-Romagna, per ottemperare agli obblighi informativi verso l'Unione Europea, conduce approfondimenti conoscitivi finalizzati alla definizione del carico nominale per agglomerato sulla base di quanto individuato dalle Province.

Obiettivo principale è definire, in maniera dettagliata, la consistenza dell'impatto potenziale della pressione antropica sul territorio, relativamente ai comparti domestico e industriale, in termini di carico puntuale sversato nei corsi d'acqua dalle infrastrutture di collettamento, depurate o meno.

Sono quindi considerati i contributi provenienti dagli impianti di depurazione, dalle fognature non trattate e dagli scaricatori di piena.

Le Province mantengono aggiornato il catasto degli <u>impianti di trattamento</u> delle acque reflue al servizio degli agglomerati urbani; tali scarichi sono per lo più composti da un miscuglio di acque reflue domestiche, di acque reflue industriali e acque meteoriche di dilavamento convogliate in reti fognarie.

Il carico connesso alle <u>fognature non trattate</u> si genera laddove parte dei reflui prodotti sono sversati tal quali, senza sistema di trattamento depurativo, nel corpo idrico superficiale, anche in località o in aree di centri urbani di notevoli dimensioni pur dotate di un sistema di raccolta dei reflui

Durante gli eventi meteorici infatti, notevoli quantità di inquinanti vengono asportate dalle superfici scolanti urbane o rimosse dai collettori fognari e veicolate, attraverso gli <u>scaricatori di piena</u>, in corsi d'acqua naturali e artificiali, senza transitare attraverso gli impianti di depurazione.

Per il <u>settore industriale sversante in CIS</u> riferimento principale sono le risultanze di un lavoro condotto sulla ricognizione dei prelievi e delle emissioni di inquinanti sulla matrice acqua per le aziende presenti nel territorio regionale che scaricano sostanze pericolose e/o ricadono nella normativa IPPC.

Per le <u>sostanze pericolose sversate in CIS</u> riferimento principale sono le risultanze della prima redazione dell'"*Inventario dei rilasci da fonte diffusa, degli scarichi e delle perdite*", con riferimento alle sostanze pericolose appartenenti all'elenco di priorità (Tab. 1/A) e non pericolose (Tab. 1/B); tale inventario contiene informazioni per gli scarichi dei depuratori civili e per gli scarichi industriali.

2.1 CARICHI PROVENIENTI DAGLI INSEDIAMENTI URBANI

Relativamente alla valutazione dei carichi inquinanti sversati dagli insediamenti urbani si sono considerati:

- i carichi domestici/industriali che recapitano in fognatura;
- carichi provenienti dagli scaricatori di piena sversati in corpo idrico superficiale.

Elemento fondamentale per la valutazione dei carichi prodotti da fonti puntuali è l'individuazione degli insediamenti urbani che sono fonte delle pressioni antropiche prodotte sui corsi d'acqua superficiali.

In Emilia-Romagna sono state censite 7.276 località; per 6.839 centri e nuclei, che interessano circa il 99,5% della popolazione residente in loco (corrispondente al 90,7% del complessivo regionale), le informazioni sono state associate ad un poligono georeferenziato e rappresentate in cartografia.

La popolazione residente in Emilia-Romagna (ISTAT - 15° Censimento) risultava nel 2011 pari a 4.471.104 abitanti; sono ricompresi tra questi i 17.902 abitanti residenti nei sette comuni marchigiani (Casteldelci, Maiolo, Nova Feltria, Pennabilli, Sant'Agata Feltria, San Leo e Talamello), aggregati nel

2009 alla Regione Emilia-Romagna. L'incremento rispetto al precedente "Censimento della popolazione" del 2001, è di circa 230.000 abitanti, pari al 5,8%.

Per l'orizzonte temporale del 2020 si prevede un ulteriore incremento complessivo pari a circa 5,4%, con conseguente superamento della soglia di 4.600.000 abitanti.

Un aspetto di notevole importanza attiene alla tendenza dei flussi distributivi della popolazione sul territorio regionale; a causa del progressivo esodo dai comuni capoluogo verso i comuni limitrofi, osservato negli ultimi anni, si registra un rilevante incremento di popolazione con conseguente espansione delle aree urbane.

Nell'intero territorio dell'Emilia-Romagna circa il 9% dei residenti abita in case sparse; se si considerano i soli comuni ubicati in montagna la percentuale aumenta a circa il 15%.

Per la determinazione degli Abitanti Equivalenti (AE) degli insediamenti produttivi sono stati considerati i carichi industriali attualmente autorizzati allo scarico in pubblica fognatura; i dati riportati nella Tabella 2.1 sono desunti dalle informazioni fornite dai Gestori.

Il carico complessivo che potenzialmente grava sul territorio regionale è generato dal carico dei residenti, degli insediamenti produttivi, escludendo il carico di quegli insediamenti industriali che trattano direttamente i loro scarichi sversandoli in corpo idrico superficiale, nonché dai turisti. Nella Tabella 2.1 sono riportati i risultati a livello regionale, nello scenario ricostruito relativamente al periodo di punta. Il carico complessivo ammonta a circa 6,7 milioni di abitanti equivalenti, ripartito nelle varie province; il 67% del carico è rappresentato dalla voce "residenti" mentre, considerando anche i turisti, si può notare che il carico civile presente nel periodo di punta rappresenta circa l'85% del totale regionale.

Tabella 2.1 Carico antropico nominale (relativo al periodo di punta)

Province	Residenti	Produttivi	Turisti 2012	Carico nominale
	(\mathbf{n}°)	(AE)	(\mathbf{n}°)	(AE)
Piacenza	290.966	68.142	29.015	388.123
Parma	447.251	124.361	54.269	625.881
Reggio Emilia	535.869	50.648	6.681	593.198
Modena	706.417	72.757	81.599	860.773
Bologna	1.003.915	177.426	95.268	1.276.609
Ferrara	358.116	61.952	160.272	580.340
Ravenna	395.077	239.005	211.846	845.928
Forlì-Cesena	398.162	67.399	144.186	609.747
Rimini	335.331	93.392	437.777	866.500
Totale	4.471.104	955.082	1.220.913	6.647.099

2.1.1 Il sistema fognario-depurativo

I residenti totali in Emilia-Romagna sono pari a 4.47 milioni e di questi 4.08 sono i residenti stimati nelle località, di questi 3.96 sono serviti da fognature; pertanto la quota di residenti serviti da rete fognaria, rispetto al totale che potrebbe fruire del servizio (residenti che non risiedono in case sparse ma in località allacciabili), risulta pari al 97% del totale.

La reale consistenza del sistema fognario-depurativo della regione Emilia-Romagna mostra che, a fronte di un carico antropico complessivo di 6.65 milioni di AE (residenti + turisti + produttivi), l'Emilia-Romagna dispone di un sistema fognario capace di servire 6.13 milioni di AE, cioè il 92% del carico complessivo (Tabella 2.42), con un sistema depurativo che tratta circa 6.06 milioni di AE.

Tabella 2.2 Residenti, turisti e AE produttivi serviti da rete fognaria

Province	Residenti	Residenti serviti	Produttivi	Produttivi serviti	Turisti	Turisti serviti	Totale	Totale serviti	serviti	servibili
	(AE)	(AE)	(AE)	(AE)	(AE)	(AE)	(AE)	(AE)	%	%
Piacenza	290.966	262.504	68.142	68.142	29.015	28.743	388.123	359.389	93	98
Parma	447.251	387.164	124.361	124.361	54.269	53.215	625.881	564.740	90	96
Reggio-Emilia	535.869	471.048	50.648	50.648	6.681	6.631	593.198	528.326	89	96
Modena	706.417	632.771	72.757	72.757	81.599	79.827	860.773	785.355	91	98
Bologna	1.003.915	906.732	177.426	177.426	95.268	95.014	1.276.609	1.179.172	92	98
Ferrara	358.116	318.215	61.952	61.952	160.272	160.272	580.340	540.439	93	99
Ravenna	395.077	339.889	239.005	239.005	211.846	211.785	845.928	790.679	93	99
Forlì-Cesena	398.162	343.903	67.399	67.399	144.186	143.149	609.747	554.451	91	98
Rimini	335.331	300.469	93.392	93.392	437.777	437.777	866.500	831.638	96	100
Totale	4.471.104	3.962.696	955.082	955.082	1.220.913	1.216.412	6.647.099	6.134.190	92	98

I residenti collettati ad un impianto di trattamento sono stimati in 3.9 milioni, circa l'87% rispetto al totale regionale, corrispondente al 96% dei residenti effettivamente allacciabili ad un sistema di depurazione (escludendo i residenti in case sparse) (Tabella 2.3). Questa ultima percentuale è maggiormente rappresentativa del livello di trattamento dei reflui urbani raggiunto in Emilia – Romagna e del reale margine di miglioramento possibile compatibilmente con i limiti tecnici ed economici.

Tabella 2.3 Residenti in località e case sparse, serviti da fognature e depurati da impianti di trattamento

	Residenti	Residenti in località	Residenti in case sparse	Serviti	% serviti	% servibili	Depurati	% depurati	% depurabili
Province	A	В	C	D	D/A	D/B	E	E/A	E/B
Piacenza	290.966	270.990	19.983	262.504	90	97	258.560	89	95
Parma	447.251	410.078	37.173	387.164	87	94	381.380	85	93
Reggio-	535.869	492.678	43.204	471.048	88	96	463.660	87	94
Modena	706.417	643.451	63.216	632.771	90	98	626.614	89	97
Bologna	1.003.915	926.097	77.819	906.732	90	98	899.889	90	97
Ferrara	358.116	324.914	33.202	318.215	89	98	305.029	85	94
Ravenna	395.077	348.316	46.764	339.889	86	98	337.008	85	97
Forlì-	398.162	355.932	42.235	343.903	86	97	336.726	85	95
Rimini	335.331	303.933	31.401	300.469	90	99	298.364	89	98
Totale	4.471.104	4.076.389	394.997	3.962.696	89	97	3.907.232	87	96

Includendo anche il contributo degli AE produttivi e dei turisti presenti nel periodo di punta, la percentuale degli AE trattati da impianti di depurazione passa dall'87% al 91%, come evidenziato nella Tabella 2.4. Analogamente, se vengono considerati solo i residenti "depurabili", la percentuale aumenta dal 96% al 97%.

Tabella 2.4 Residenti, turisti e AE produttivi depurati

Province	Residenti	Residenti depurati	Produttivi	Produttivi depurati	Turisti	Turisti depurati	Totale	Totale depurati	depurati	depurabili
	(AE)	(AE)	(AE)	(AE)	(AE)	(AE)	(AE)	(AE)	%	%
Piacenza	290.966	258.560	68.142	68.018	29.015	23.808	388.123	350.386	90	95
Parma	447.251	381.380	124.361	124.010	54.269	50.597	625.881	555.988	89	94
Reggio-Emilia	535.869	463.660	50.648	50.152	6.681	6.574	593.198	520.386	88	95
Modena	706.417	626.614	72.757	72.643	81.599	78.126	860.773	777.383	90	97
Bologna	1.003.915	899.889	177.426	176.666	95.268	94.122	1.276.609	1.170.677	92	98
Ferrara	358.116	305.029	61.952	59.951	160.272	160.272	580.340	525.252	91	96
Ravenna	395.077	337.008	239.005	238.686	211.846	211.785	845.928	787.480	93	99
Forlì-Cesena	398.162	336.726	67.399	66.994	144.186	142.524	609.747	546.243	90	96
Rimini	335.331	298.364	93.392	93.311	437.777	437.777	866.500	829.452	96	99
Totale	4.471.104	3.907.232	955.082	950.431	1.220.913	1.205.585	6.647.099	6.063.248	91	97

2.1.2 Agglomerati

Il Decreto Legislativo n° 152/2006 definisce l'agglomerato come un'area in cui la popolazione ovvero le attività economiche, sono sufficientemente concentrate così da rendere possibile e cioè tecnicamente ed economicamente realizzabile, anche in rapporto ai benefici ambientali conseguibili, la raccolta e il convogliamento delle acque reflue urbane verso un sistema di trattamento di acque reflue urbane o verso un punto di scarico finale.

La consistenza nominale di un agglomerato è individuata in base al numero di residenti, al numero di turisti *nel periodo di punta* e al numero di AE produttivi che recapitano in pubblica fognatura, calcolati per ciascuna località appartenente ad esso:

AE nominali agglomerato = Residenti + Turisti periodo di punta + AE produttivi in fognatura

Sulla base di tale definizione, sono stati censiti in Emilia-Romagna 2.872 agglomerati, per una consistenza complessiva di circa 6.23 milioni di AE, comprensiva anche degli AE provenienti dal territorio extraregionale di San Marino che confluiscono nell'agglomerato di Rimini.

La maggior parte degli AE nominali sono concentrati negli agglomerati di consistenza ≥ 2.000 AE, che rappresentano numericamente solo il 7% degli agglomerati presenti sul territorio regionale (207 agglomerati), per una consistenza complessiva di circa 5.8 milioni AE (93% del totale).

In Tabella 2.5 è riportata la situazione in dettaglio degli AE serviti da rete fognaria appartenenti agli agglomerati censiti in regione. Il carico preponderante è quello concentrato negli agglomerati di consistenza superiore a 15.000 AE; in essi infatti insistono circa 4.87 milioni di AE, pari all'84% del totale.

La Tabella 2.6 fa riferimento agli AE effettivamente depurati.

Tabella 2.5 Numero, AE nominali e serviti negli agglomerati per classe di consistenza e provincia

classe	classe 0 – 1999					≥ 2	000		Totale			
Provincia	n°	AE	AE serviti	(%)	n°	AE	AE serviti	(%)	n°	AE	AE serviti	(%)
Piacenza	621	63.396	63.393	100	23	296.268	295.996	100	644	359.664	359.389	100
Parma	346	52.657	51.766	98	31	517.206	505.562	98	377	569.863	557.328	98
Reggio-Emilia	384	44.103	43.225	98	20	472.619	462.098	98	404	516.722	505.323	98
Modena	370	66.413	59.901	90	38	747.104	747.104	100	408	813.517	807.005	99
Bologna	275	66.542	65.799	99	43	1.108.767	1.106.277	100	318	1.175.309	1.172.076	100
Ferrara	385	67.842	66.166	98	22	477.340	474.639	99	407	545.182	540.805	99
Ravenna	49	11.321	10.351	91	17	789.251	786.811	100	66	800.572	797.162	100
Forlì-Cesena	140	31.621	31.096	98	8	528.403	522.419	99	148	560.024	553.515	99
Rimini (*)	95	14.520	14.382	99	5	863.253	863.235	100	100	877.773	877.617	100
Totale	2.665	418.415	406.080	97	207	5.800.211	5.764.140	99	2.872	6.218.626	6.170.220	99

(*) compreso San Marino

Tabella 2.6 Numero, AE nominali e depurati negli agglomerati per classe di consistenza e provincia

classe	classe 0 – 1999					≥ 2	000		Totale			
Provincia	n°	AE	AE depurati	(%)	n°	AE	AE depurati	(%)	n°	AE	AE depurati	(%)
Piacenza	621	63.396	54.390	100	23	296.268	295.996	100	644	359.664	350.386	97
Parma	346	52.657	48.288	98	31	517.206	505.562	98	377	569.863	553.851	97
Reggio-Emilia	384	44.103	35.404	98	20	472.619	462.098	98	404	516.722	497.502	96
Modena	370	66.413	52.949	90	38	747.104	747.104	100	408	813.517	800.053	98
Bologna	275	66.542	57.304	99	43	1.108.767	1.106.277	100	318	1.175.309	1.163.581	99
Ferrara	385	67.842	50.979	98	22	477.340	474.639	99	407	545.182	525.618	96
Ravenna	49	11.321	7.151	91	17	789.251	786.811	100	66	800.572	793.962	99
Forlì-Cesena	140	31.621	22.889	98	8	528.403	522.419	99	148	560.024	545.307	97
Rimini (*)	95	14.520	12.674	99	5	863.253	863.235	100	100	877.773	875.909	100
Totale	2.665	418.415	342.029	82	207	5.800.211	5.764.140	99	2.872	6.218.626	6.106.170	98

(*) compreso San Marino

2.1.3 Impianti di trattamento

In ambito regionale sono stati censiti 2.099 impianti di depurazione di acque reflue urbane. Detti impianti comprendono diverse tipologie di trattamento, da quelle più semplificate a quelle più complesse, tipiche dei grandi sistemi consortili. Essi risultano avere complessivamente una potenzialità di progetto di circa 8,4 milioni di AE e risultano trattare circa 6,1 milioni di AE, considerando il carico trattato nel periodo di punta.

In Tabella 2.7 viene indicato il numero, unitamente alla rispettiva potenzialità di progetto, degli impianti di trattamento di acque reflue urbane presenti nel territorio regionale, suddivisi per tipologia di trattamento. Tra gli impianti di I livello si considerano: le fosse Imhoff, le fosse settiche e gli altri trattamenti di tipo primario. Appartengono al II livello tutti i trattamenti biologici, quali i fanghi attivi, i biodischi e i letti percolatori, mentre gli impianti che oltre ad effettuare un trattamento secondario possiedono processi di defosfatazione e/o denitrificazione sono inclusi nel III livello.

Come si può osservare, in Emilia-Romagna vi sono 1.377 impianti che possiedono solo un trattamento primario (per una potenzialità di trattamento pari al solo 3% della potenzialità complessiva installata), 538 un trattamento equivalente al secondario e 184 presentano trattamenti più avanzati per la rimozione dei nutrienti.

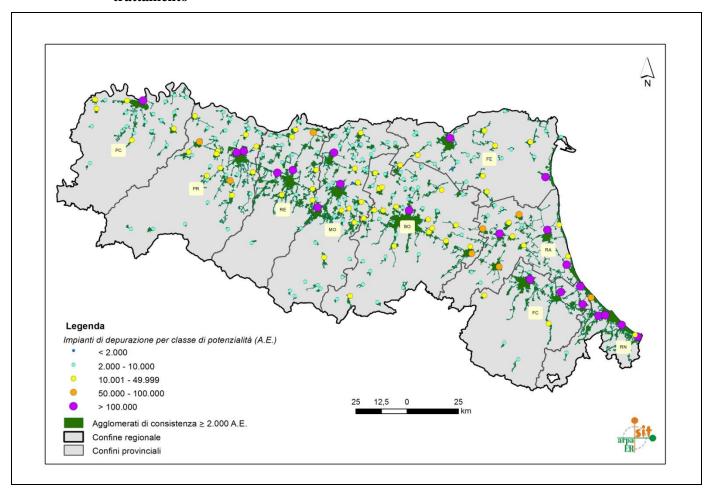
Di questi, come si evince dalla Tabella 2.12, 80 impianti presentano *solo* la rimozione dell'azoto (DeN), 9 hanno il *solo* trattamento per il fosforo (DeP) mentre 95 prevedono entrambe le fasi di denitrificazione e defosfatazione (DeN + DeP).

Tabella 2.7 Numero di impianti, livello di trattamento, potenzialità di progetto (anno 2012)

Classe agglomerato		Numero	impianti		Potenzialità di progetto					
	I	II	III	tot	I	II	III	tot		
(AE)	(n°)	(n°)	(n°)	(n°)	(AE)	(AE)	(AE)	(AE)		
0 – 1.999	1.377	469	31	1.877	174.515	311.940	47.045	533.500		
2.000 - 10.000	0	65	75	140	0	397.515	531.620	929.135		
10.001 - 15.000	0	2	21	23	0	18.500	457.700	476.200		
15.001 - 150.000	0	2	43	45	0	96.000	2.614.400	2.710.400		
>150.000	0	0	14	14	0	0	3.751.333	3.751.333		
Totale	1.377	538	184	2.099	174.515	823.955	7.402.098	8.400.568		

In Tabella 2.8, sono evidenziati il numero degli impianti e la loro potenzialità di progetto, suddivisi per Provincia.

Tabella 2.8 Numero e potenzialità di progetto degli impianti per classe di consistenza dell'agglomerato e provincia


Classe	0-	1.999	2.000-10.000		10.001-15.000		15.001-150.000		>150.000		Totale	
Provincia	(n°)	(AE)	(n °)	(AE)	(n °)	(AE)	(n °)	(AE)	(n °)	(AE)	(n°)	(AE)
Piacenza	462	82.972	19	109.015	3	52.500	1	20.000	1	163.333	486	427.820
Parma	399	74.773	22	148.270	4	74.500	6	183.000	2	298.000	433	778.543
Reggio-Emilia	204	82.216	12	76.200	2	35.000	5	302.000	1	280.000	224	775.416
Modena	293	73.600	26	166.200	6	74.800	6	443.000	1	500.000	332	1.257.600
Bologna	195	82.166	31	204.700	4	57.000	11	287.400	1	900.000	242	1.531.266
Ferrara	89	73.648	19	140.250	2	62.000	1	27.500	2	420.000	113	723.398
Ravenna	33	11.910	7	49.700	1	100.000	7	575.000	2	440.000	50	1.176.610
Forlì-Cesena	124	37.355	3	27.800	1	20.400	4	452.500	2	260.000	134	798.055
Rimini	78	14.860	1	7.000	0	0	4	420.000	2	490.000	85	931.860
Totale	1.877	533.500	140	929.135	23	476.200	45	2.710.400	14	3.751.333	2.099	8.400.568

Gli impianti di piccola potenzialità sono ubicati principalmente in Emilia mentre diminuiscono in Romagna, dove si riscontra una maggiore presenza degli impianti di trattamento di elevata potenzialità (> 150.000 AE). Impianti di elevata potenzialità, sono comunque sempre presenti nelle città capoluogo, nei centri altamente industrializzati (Carpi, Sassuolo, ecc.) e nei centri abitati lungo la costa.

Dall'indagine condotta emerge che gli agglomerati aventi consistenza superiore o uguale a 2.000 AE sono tutti serviti da impianti di almeno II livello (222 impianti di trattamento di cui 153 presentano sistemi di trattamento più spinti) che coprono circa il 94% della capacità di trattamento complessiva (7.87 milioni di AE) (Figura 2.1).

In Tabella 2.7 viene riportato il dettaglio dei trattamenti (I, II, III livello) per classe dimensionale dell'agglomerato.

Figura 2.1 Ubicazione degli agglomerati di consistenza ≥ 2.000 AE e dei rispettivi impianti di trattamento

Per la valutazione dei carichi sversati e dei relativi abbattimenti, si sono analizzati, per singolo impianto, gli elementi caratteristici di funzionamento: portata media e concentrazioni medie degli inquinanti in ingresso e in uscita. Per la maggior parte degli impianti al servizio di agglomerati ≥ 2.000 AE i valori di concentrazione dei nutrienti nei reflui in ingresso e uscita derivano da misure analitiche dirette (vedi Tabella 2.9 relativa all'anno 2012).

Tabella 2.9 Numero di impianti, al servizio di agglomerati ≥ 2.000 AE, in cui si sono stimati o misurati i valori di carico in ingresso e uscita – anno 2012

Classe agglomerato	Numero impianti		Az	oto		Fosforo					
		ingre	sso	usc	ita	ingre	sso	uscita			
		misurato	stimato	misurato	stimato	misurato	stimato	misurato	stimato		
(AE)	(n°)	(n°)	(n°)	(n°)	(n°)	(n°)	(n°)	(n°)	(n°)		
Totale	222	192	30	217	5	200	22	215	7		

Nei casi in cui non erano disponibili le concentrazioni medie dei nutrienti provenienti dalla rete fognaria, misurati in ingresso all'impianto, queste sono state ricostruite mediante l'uso di valori bibliografici (vedi Tabella 2.10).

Tabella 2.10 Valori medi caratteristici in ingresso utilizzati nelle stime

Carico	per AE	Dotazione idrica	Concentrazione			
Azoto	Fosforo	per AE	Azoto	Fosforo		
(g/AE/d)	(g/AE/d)	(m ³ /AE/d)	(mg/l)	(mg/l)		
11	1,6	0,250	44	6.4		

Nei casi in cui, invece, non erano disponibili le concentrazioni misurate in uscita dagli impianti si sono considerati i valori in ingresso ricostruiti come riportato in precedenza, ridotti di una quota percentuale sulla base della tipologia di trattamento presente. La % di rimozione dell'azoto in impianti di II livello è stata assunta pari al 60% del carico in ingresso, mentre per il fosforo la percentuale è stata ridotta al 50%. Questa valutazione deriva in parte da fonti bibliografiche richiamate dalla stessa CE, ma è stata confermata dai dati analitici misurati in un significativo numero di impianti presenti nella nostra regione. Negli impianti che presentano, invece, anche un trattamento di denitrificazione e/o di defosfatazione (III livello) si possono raggiungere, secondo la medesima fonte bibliografica, percentuali di abbattimento del carico iniziale di azoto e fosforo pari all'80% e all'85% rispettivamente. Anche le predette % di abbattimento indicate dai dati di letteratura per "trattamenti spinti" hanno trovato riscontro nei dati analitici misurati su di un significativo numero di impianti presenti in regione. A titolo indicativo, in Tabella 2.11 si riportano le % di abbattimento utilizzate per le tipologie di trattamento più significative della realtà regionale, *in assenza di dati misurati*.

Tabella 2.11 Abbattimenti medi utilizzati in caso di assenza di dati misurati

Tipologia trattamento	% abbattimento N	% abbattimento P
fossa Imhoff	15	10
letto percolatore	35	50
biodischi	60	50
fitodepurazione	60	50
fanghi attivi	60	50
fanghi attivi con nitri-denitri	80	50
fanghi attivi con defosfatazione	60	85
fanghi attivi con nitri-denitri e defosfatazione	80	85

In Tabella 2.12 e nella successiva Tabella 2.13, è rappresentata la sintesi dei dati disponibili relativamente all'abbattimento del carico dei nutrienti (N e P) afferente agli impianti di depurazione. Nella seconda tabella, i valori riportati nella colonna "AE medi trattati" sono i *valori medi annui*, utili per un confronto con i carichi e le portate che rispecchiano una stima della situazione annua.

Dall'analisi dei dati riportati si può osservare come i carichi di azoto e fosforo in ingresso agli impianti di depurazione che presentano trattamenti più spinti (denitrificazione, defosfatazione, entrambi), siano pari a circa l'80% del carico complessivo, mentre agli impianti di tipo primario afferisce meno del 2% del carico di azoto e fosforo generato dall'intero territorio regionale.

In Tabella 2.13 è presentata una disaggregazione spaziale del dato per ambiti idrografici.

Tabella 2.12 Numero di impianti per tipologia di trattamento e relativi carichi di N e P, suddivisi per tipologia di trattamento (anno 2012)

	Impianti	Portata	AE progetto	AE medi trattati	Carichi azoto		Carichi fosforo		
					ingresso uscita		ingresso	uscita	
	(n°)	$(10^{3} \text{ m}^3/\text{y})$	(AE)	(AE)	(t/y)	(t/y)	(t/y)	(t/y)	
Primario	1.377	7.782	174.515	85.286	342,4	291,1	49,8	44,8	
Secondario	538	44.694	823.955	535.748	2.018,7	637,7	247,6	105,3	
Più avanzato	184	386.585	7.402.098	4.402.509	17.686,8	4.060,5	2.385,2	356,4	
Denitrific (DeN)	80	29.775	463.540	324.399	1.179,8	302,6	153,9	58,6	
Defosfat (DeP)	9	6.480	137.800	109.278	256,9	89,8	27,7	8,5	
DeN + DeP	95	350.330	6.800.758	3.968.832	16.250,0	3.668,1	2.203,6	289,3	
Totale	2.099	439.061	8.400.568	5.023.543	20.047,9	4.989,3	2.682,6	506,5	

Tabella 2.13 Numero di impianti per tipologia di trattamento e relativi carichi di N e P suddivisi per bacino (anno 2012)

	Impianti	Portata	AE progetto	AE medi trattati	Carichi	azoto	Carichi	fosforo
Ambiti			,		ingresso	uscita	ingresso	uscita
	(n °)	$(10^{3} \cdot m^3/y)$	(AE)	(AE)	(t/y)	(t/y)	(t/y)	(t/y)
da Bardon. a Loggia escluso Tidone	37	1.553	45.988	37.061	54	26	7	3
Tidone	57	670	11.887	7.644	28	18	4	3
Trebbia	141	3.147	68.369	38.529	110	47	16	7
Nure	75	1.356	32.978	15.260	48	23	7	4
Chiavenna	80	2.256	35.259	25.983	84	35	11	6
Arda – Cavo Fontana	72	3.439	64.923	44.082	119	53	15	8
Taro	240	16.072	244.178	155.475	612	154	83	21
Parma-Cavo Sissa Abate	94	35.732	435.777	299.400	1.241	287	190	32
Enza	155	5.254	100.729	57.392	199	76	28	11
Crostolo	31	27.527	487.885	287.903	1.431	275	140	23
Secchia - Coll.Princ. MR.	275	43.327	657.073	447.288	1.858	461	217	54
Panaro	185	43.651	822.652	430.093	1.581	442	244	50
C. Bianco - Giralda - Po di Volano	37	6.273	113.135	55.094	191	72	31	13
Burana - C.le Navigabile	91	42.985	707.551	407.846	1.621	463	321	67
Reno	242	72.714	1.456.918	1.024.212	3.923	1.131	383	108
Destra Reno	23	13.628	532.980	287.356	803	153	69	11
Lamone	19	5.561	136.920	112.906	316	52	32	6
Candiano	5	17.608	310.850	173.907	843	132	96	10
Fiumi Uniti	45	13.967	285.571	181.192	701	202	170	9
Bevano	4	1.365	35.680	8.378	45	12	5	1
Savio	48	1.844	32.561	19.787	71	31	12	5
C.le di Cesenatico- Rubicone-Uso	38	18.752	533.249	224.126	1.089	172	200	7
Marecchia	41	28.659	504.234	317.642	1.204	289	155	25
dal Marano al Tavollo	33	12.629	343.290	136.315	655	209	69	10
Tevere	3	37	2.570	405	2	1	0	0
Altri bacini minori	28	19.055	397.361	228.266	1.219	174	179	13
TOTALE	2.099	439.061	8.400.568	5.023.543	20.048	4.989	2.683	506

2.1.4 Carichi provenienti da reti non depurate

In Emilia-Romagna sono ancora presenti situazioni di reti fognarie che scaricano direttamente in corpo idrico superficiale. Per quantificare i carichi sversati da queste reti nell'ambiente, si sono utilizzati i coefficienti di carico indicati nella Tabella 2.10. Considerato che, nel caso di reti non trattate, il gestore del SII richiede che i singoli scarichi domestici allacciati alla rete siano dotati di vasche

settiche o fosse imhoff, si è ipotizzato che a monte dell'immissione in pubblica fognatura venga effettuato un abbattimento tipico di un trattamento primario; quindi i carichi potenziali sono stati ridotti del 15% per l'azoto e del 10% nel caso del fosforo. Si ottiene, così, che circa l'1% degli Abitanti Equivalenti del territorio regionale, allacciati a reti non depurate, sversano un carico di azoto e fosforo pari a circa 242 t/y e 37 t/y rispettivamente, che corrispondono al 5% e al 7% del carico sversato dagli impianti di depurazione presenti in regione (vedi Tabella 2.134).

Tabella 2.14 Abitanti equivalenti serviti da rete fognarie non depurate

Province	AE nominali	AE depurati	AE non depurati	% residenti non depurati	Carichi N sversati da AE non dep	Carichi P sversati da AE non dep
	(n °)	(n °)	(n °)	(%)	(t/y)	(t/y)
Piacenza	388.123	350.386	9.003	2,5	30,7	4,7
Parma	625.881	555.988	8.752	1,5	29,9	4,6
Reggio-Emilia	593.198	520.386	7.940	1,5	27,1	4,2
Modena	860.773	777.383	7.972	1,0	27,2	4,2
Bologna	1.276.609	1.170.677	8.495	0,7	29,0	4,5
Ferrara	580.340	525.252	15.187	2,8	51,8	8,0
Ravenna	845.928	787.480	3.200	0,4	10,9	1,7
Forlì-Cesena	609.747	546.243	8.207	1,5	28,0	4,3
Rimini	866.500	829.452	2.187	0,3	7,5	1,1
Totale	6.647.099	6.063.248	70.943	1,2	242,1	37,3

2.1.5 Metalli pesanti e sostanze pericolose (rif. "Inventario dei rilasci da fonte diffusa, scarichi e perdite") in uscita dagli impianti di depurazione

Per i depuratori civili, oltre ai dati relativi ai carichi sversati di azoto e fosforo, nonché di BOD₅, COD e solidi sospesi, si possono fornire anche valutazioni riguardo ai carichi di metalli pesanti, per i quali sono presenti dati analitici provenienti dai controlli effettuati da ARPA.

Per la valutazione dei carichi di metalli pesanti provenienti dai reflui di depurazione, il riferimento è la base dati presente nel sistema ARU, relativa ai controlli condotti da ARPA nel 2009÷2011; i metalli oggetto di valutazione sono As, Cd, Cr, Hg, Ni, Pb e Zn.

Per i metalli pesanti considerati sono disponibili i dati relativi a circa 1.390 campioni prelevati nei 204 impianti controllati, per un totale di quasi 6.400 determinazioni analitiche. Per ogni impianto sono disponibili dai 18 ai 3 dati, salvo che per alcuni impianti per i quali i controlli sul set completo di metalli pesanti sono stati avviati solo di recente.

La disponibilità di dati analitici per i singoli metalli in esame dipende dal tipo di analita: Cd, Cr, Pb e Zn vengono rilevati pressoché in tutti gli impianti; l'As viene controllato in 55 impianti; il Hg viene controllato in 29 impianti; il Ni viene controllato in 94 impianti.

Ai fini di una corretta valutazione è necessario segnalare una criticità connessa ai limiti di quantificazione analitici (LOQ) dei metalli pesanti analizzati nei campioni di acque reflue; infatti, se da un lato i limiti di quantificazione in uso nei laboratori soddisfano le richieste normative e sono adeguati per la verifica della conformità ai limiti dello scarico, gli stessi possono essere nettamente superiori rispetto ai limiti previsti per il monitoraggio dei corpi idrici ai fini della valutazione di qualità ambientale. Ciò deriva essenzialmente da una discrepanza tra i livelli di concentrazione massima ammessi per le acque reflue rispetto allo SQA (standard di qualità ambientale) per la valutazione dello stato chimico delle acque; conseguentemente, dal momento che spesso i metalli pesanti sono presenti in tracce, risulta talvolta critico impostare un affidabile bilancio di massa degli inquinanti a livello di bacino.

Per l'elaborazione del carico dei metalli si è proceduto, in analogia alla valutazione condotta per i nutrienti, moltiplicando i volumi medi annui scaricati e le concentrazioni medie riferite al triennio di riferimento. La valutazione delle concentrazioni medie è condotta secondo la metodologia indicata da

ISPRA per la predisposizione dell'Inventario delle emissioni e degli scarichi. In particolare, secondo quanto indicato da ISPRA, il problema è adottare una metodologia comune per la corretta espressione dei valori di concentrazione qualora la concentrazione stessa risulti inferiori al limite di quantificazione; in questo caso quindi, convenzionalmente, le concentrazioni riscontrate sono espresse come valore pari alla metà del LOQ. Sono stati valutati tutti i dati, anche qualora per lo scarico sia presente solo una determinazione con risultati quantificabili (>LOQ), anche in presenza di concentrazione media inferiore al relativo LOQ.

In sintesi per lo Zn, date le analisi condotte e le concentrazioni riscontrate, è stato possibile condurre elaborazioni per quasi tutti gli impianti (98%); per gli altri metalli pesanti invece è stato possibile pervenire ad elaborazioni significative solo per un ridotto numero di impianti (As 3%; Cd 9%; Cr 15%; Hg 1%; Ni 26%; Pb 9%) a causa dei pochi dati di concentrazione significativi.

Pertanto è stata applicata la stima dei carichi di metalli pesanti anche agli impianti non direttamente monitorati e agli impianti con riscontri di concentrazioni medie non direttamente quantificabili (alti LOQ); in questi casi sono state stimate concentrazioni medie pari a quelle riscontrate negli scarichi con concentrazioni quantificabili.

Nella Tabella 2.15 sono riportati i valori delle concentrazioni medie quantificate per i diversi metalli. Per As e Hg il numero di impianti per i quali è risultato possibile valutare le concentrazioni medie è esiguo, per essi non si ritiene quindi di disporre di dati tali da stimare valori di riferimento affidabili. Per gli impianti con concentrazioni non quantificabili e con LOQ "adeguati" (inferiori ai valori medi di riferimento) si considera un carico nullo.

Tabella 2.15 Concentrazioni medie µg/l quantificate sugli impianti monitorati

	Cd	Cr	Ni	Pb	Zn
Concentrazioni medie di riferimento	0.36	4.0	7.9	3.6	84.8

Nella Tabella 2.16 sono mostrate le stime per provincia dei carichi di metalli sversati in CIS (corpo idrico superficiale) per circa 620 impianti; sono stati considerati impianti aventi almeno 200 AE allacciati. Come già spiegato, le stime di concentrazione elaborate in riferimento ai 204 impianti monitorati, sono state applicate anche ai circa 410 impianti non monitorati per i metalli pesanti. È da osservare come, rispetto al totale di circa 480 milioni di m³/anno complessivamente scaricati, ai circa 410 impianti non monitorati siano riferibili meno di 40 milioni m³/anno di reflui. Per As e Hg sono considerati solo gli impianti (pochi) per i quali i risultati delle analisi hanno permesso una quantificazione reale e significativa della concentrazione media.

Tabella 2.16 Carichi di metalli sversati in CIS nelle diverse province (t/anno)

Provincia	As (*)	Hg (*)	Cd	Cr	Ni	Pb	Zn
Piacenza	-	-	0.009	0.10	0.19	0.09	1.1
Parma	-	-	0.023	0.09	0.70	0.07	7.6
Reggio-Emilia	-	-	0.019	0.25	0.50	0.22	6.2
Modena	0.00	-	0.047	0.17	1.14	0.22	10.9
Ferrara	0.09	0.003	0.018	0.20	0.34	0.16	2.6
Bologna	-	-	0.032	0.33	0.67	0.27	7.7
Ravenna	0.00	0.000	0.016	0.28	0.37	0.17	2.8
Forlì-Cesena	-	-	0.011	0.13	0.25	0.20	2.0
Rimini	-	-	0.016	0.19	0.34	0.16	1.6
Totale	0.09	0.003	0.19	1.75	4.50	1.56	42.6
(*)	"-" equivale	a nessun impia	nto con possibi	lità di quantific	azione della co	ncentrazione m	edia

2.1.6 I carichi di nutrienti provenienti dagli sfioratori di piena

Durante gli eventi meteorici, notevoli quantità di inquinanti vengono asportate dalle superfici urbane scolanti o rimosse dai collettori fognari e veicolate, attraverso gli scaricatori di piena, in corsi d'acqua naturali o artificiali, senza poter transitare attraverso gli impianti di depurazione.

Nelle reti fognarie di tipo misto, destinate a convogliare sia le acque reflue sia, in tempo di pioggia, le acque meteoriche, gli scaricatori di piena devono essere dimensionati per entrare in funzione qualora il grado di diluizione risulti superiore a 3-5 volte la portata media di tempo secco.

Tenuto conto delle condizioni climatiche che si hanno nell'area di pianura della regione, gli eventi che nel corso di un anno possono dar luogo allo sfioro nei ricettori, sono dell'ordine di 50-70 (fino a 80-90 in montagna), con una durata media tale per cui, nelle prime 2-3 ore del singolo evento medio, risulta scaricato il 70-80% dell'apporto, quindi con una incidenza temporale complessiva della maggior parte del fenomeno, dell'ordine di 130-250 ore su base annua.

Relativamente alla durata degli effetti negli alvei, questa dipende da molteplici fattori idrologicoidraulici, ma soprattutto dalla velocità della corrente e dalla lunghezza dell'asta interessata; mediamente, per i corpi idrici della pianura, a livello regionale si possono assumere 12-18 ore di permanenza dei fenomeni di alterazione. Ne conseguono effetti su base annuale per 1-1.5 mesi.

Considerando le informazioni disponibili è possibile stimare l'entità dei relativi apporti inquinanti in condizioni medie, su base annuale o stagionale, ricorrendo a semplici e consolidate valutazioni statistiche.

Il metodo proposto opera una stima della massa totale di inquinante sversata dagli scaricatori, in funzione della porzione di superficie urbana impermeabile a monte degli scaricatori stessi, sulla base di una parametrizzazione che deriva da simulazioni già compiute su alcuni bacini urbani sperimentali di Bologna, per i quali sono disponibili misure di dettaglio.

In analogia a quanto riportato nella DGR 1083/2010 per le reti miste si considerano gli apporti unitari per ettaro urbano impermeabilizzato e per millimetro di pioggia caduta nel periodo di riferimento; i valori unitari sono indicati in Tabella 2.17.

In merito agli apporti inquinanti dei bacini serviti da reti separate (bianche) si è stimato un apporto inquinante pari a circa 1/4 di quello fornito dalle reti miste.

7D 1 11 A 4#		44 •	1 •1	1 1 .
Tabella 2.17	Carichi unitari di nutrienti	ner ettaro im	nermeabile e ne	r mm di ninggia cadiifa -
I ancha = II /		per cuaro mi	permeasure e pe	i iiiiii di pioggia cadata

Parametro	Carico unitario per rete unitaria	Carico unitario per rete separata
	(kg/ha/mm)	(kg/ha/mm)
P	0,010	0,0025
N	0,032	0,008

Per l'applicazione del metodo si è proceduto a:

- definire le superfici urbane dei singoli centri abitati, sovrapponendo la copertura CORINE Land Cover Project 2008 edizione 2011, che individua gli usi urbani, con la copertura degli agglomerati urbani ≥ 2.000 AE e la perimetrazione CENSUS delle località appartenenti ad agglomerati inferiori a 2.000 AE;
- definire le piogge medie locali, considerando quelle medie annue sui comuni della regione e operando delle riduzioni per le aree montane con oltre 900 mm di pioggia per anno, per tenere conto di una maggiore diluizione dei carichi da parte delle acque piovane scaricate;
- definire le singole superfici impermeabili, moltiplicando le superfici urbane per opportuni coefficienti, stabiliti in funzione del tipo di uso del suolo urbano, per escludere le porzioni permeabili (verde condominiale, giardinetti privati, parchi pubblici, campi sportivi, etc.); da analisi condotte, per grossi centri, tali percentuali impermeabili sono solitamente variabili tra il 60 e l'80%; i coefficienti di deflusso utilizzati variano per i diversi usi del suolo da 0.2 a 0.85;

- considerare le superfici urbane qualora presentino più di 3.4 ettari di superficie impermeabile,
 corrispondenti mediamente agli apporti annui di una località di circa 100 residenti;
- valutare i carichi medi sversati per i diversi inquinanti, in funzione dei relativi valori per unità di superficie e di altezza di pioggia.

Dei 690 ambiti urbani con oltre i 3.4 ettari di superficie impermeabile, quelli con reti fognarie separate risultano solo 7 e sono tutti localizzati lungo la costa: Lido di Spina, Lido di Savio, Riccione, Bellaria-Igea Marina, Punta Marina, Cervia e Marina di Ravenna.

Dall'applicazione della metodologia proposta si ottengono, a livello medio annuo, i seguenti carichi regionali di nutrienti in asta: 1.445 t/y di azoto e 452 t/y di fosforo (vedi Tabella 2.18).

Per distribuire i carichi individuati sui singoli bacini e sotto-bacini imbriferi presenti nel territorio regionale, si sono sovrapposti arealmente i centri abitati *Census* e le aree dei sotto-bacini connessi ai singoli corpi idrici, pervenendo all'aliquota di incidenza sui singoli e assumendo, in via semplificata, che gli scarichi avvengano proporzionalmente alle aree urbane interessate dai singoli bacini.

Tabella 2.18 Aree urbane, frazione impermeabilizzata e carichi di nutrienti sversati dagli sfioratori

Ambito	Sup bac	Area urb		Area imp		Azoto	Fosforo	
	(ha)	(ha)	(%)	(ha)	(%)	(t/anno)	(t/anno)	(%)
dal Bardonezza al Loggia escluso Tidone	20.289	1.068	5.3	499	2.5	12	4	0.8
Tidone	35.032	363	1.0	147	0.4	4	1	0.3
Trebbia	108.301	1.896	1.8	776	0.7	21	7	1.5
Nure	45.799	1.808	3.9	737	1.6	20	6	1.4
Chiavenna	36.294	1.068	2.9	486	1.3	13	4	0.9
Arda - Cavo Fontana	45.027	2.017	4.5	856	1.9	23	7	1.6
Taro	205.131	5.878	2.9	2.165	1.1	61	19	4.2
Parma-Cavo Sissa Abate	84.098	7.750	9.2	2.636	3.1	70	22	4.8
Enza	89.897	5.358	6.0	1.930	2.1	50	16	3.5
Crostolo	45.369	8.791	19.4	3.139	6.9	77	24	5.3
Secchia - Coll.Princ. MR.	231.529	18.216	7.9	7.357	3.2	179	56	12.4
Panaro	175.985	13.421	7.6	5.930	3.4	140	44	9.7
C. Bianco - Giralda - Po di Volano	101.252	6.036	6.0	2.339	2.3	47	15	3.2
Burana - C.le Navigabile	193.459	10.625	5.5	4.521	2.3	93	29	6.5
Reno	417.404	26.808	6.4	10.063	2.4	248	77	17.1
Destra Reno	73.921	7.149	9.7	2.876	3.9	69	22	4.8
Lamone	52.334	1.117	2.1	522	1.0	14	4	0.9
Candiano	35.287	3.947	11.2	1.621	4.6	33	10	2.2
F.Uniti	119.872	7.186	6.0	2.356	2.0	59	18	4.1
Bevano	31.485	2.021	6.4	773	2.5	17	5	1.2
Savio	65.414	2.359	3.6	884	1.4	23	7	1.6
P.to C.le di Cesenatico-Rubicone-Uso	45.641	5.078	11.1	1.719	3.8	41	13	2.9
Marecchia	60.211	3.954	6.6	974	1.6	25	8	1.7
dal Marano al Tavollo	39.474	4.236	10.7	1.004	2.5	20	6	1.4
Tevere	2.773	30	1.1	10	0.4	0	0	0.0
Altri bacini minori	72.398	11.213	15.5	4.615	6.4	87	27	6.0
TOTALE	2.433.675	159.392	6.5	60.933	2.5	1.445	452	100.0

A livello aggregato la Tabella 2.19 fornisce le informazioni per gli agglomerati di consistenza ≥ 2.000 AE e per le altre località appartenenti ad agglomerati di taglia inferiore, dotate di sistema fognario-depurativo. Complessivamente sull'intero territorio regionale, per gli abitati presi in considerazione, si riscontra un rapporto percentuale tra la superficie impermeabilizzata e la superficie urbana totale pari al 38%.

Tabella 2.19 Carichi annui di azoto e fosforo connessi agli scaricatori di piena negli agglomerati e nelle località dotate di rete fognaria

	Superficie urbana	Superficie impermeabile	Sup.imp. /Sup. tot.	Azoto	Fosforo	
	(ha)	(ha)	(%)	(t/y)	(t/y)	
Agglomerati ≥ 2.000 AE	143.217	55.047	38,4	1.293	404	
Agglomerati < 2.000 AE	16.174	5.886	36,4	152	47	
Totale	159.392	60.933	38,2	1.445	452	

2.1.7 Piani di indirizzo per la gestione delle acque meteoriche di dilavamento e acque di prima pioggia

L'art. 113, Parte III del D.Lgs. 152/2006, delega alle Regioni la disciplina delle acque di prima pioggia e di dilavamento. La Regione Emilia-Romagna ha provveduto in tal senso con le Deliberazioni di Giunta regionale n. 286/2005 e n. 1860/2006.

In particolare la D.G.R. 286/2005 prevede che le azioni di contenimento del carico inquinante, veicolato dalle acque di prima pioggia, siano inserite all'interno di specifici Piani di Indirizzo.

Al moneto, solo 3 Province hanno redatto e adottato il Piano di Indirizzo: Modena, Ravenna e Rimini. Per la redazione del presente studio sono stati analizzati i Piani di Indirizzo provinciali disponibili; tuttavia al fine di produrre una stima omogenea per l'intero territorio regionale, visto il numero ridotto di studi di dettaglio, si è deciso di operare, a livello regionale, con la metodologia descritta in precedenza.

2.1.8 Carichi dei metalli pesanti attribuiti agli scaricatori

Per i carichi di metalli pesanti attribuibili agli scaricatori di piena, i dati reperibili ai fini di una parametrizzazione, riguardano le concentrazioni rilevate nelle acque sversate; per una stima dei carichi è quindi necessaria una valutazione attendibile dei volumi idrici scaricati nella rete idrografica.

Per gli agglomerati urbani di consistenza superiore ai 2.000 AE si è effettuata una valutazione delle portate sfiorate dalla rete fognaria durante i periodi di pioggia, mettendo a confronto i volumi in ingresso alla rete connessi alle precipitazioni, i quantitativi di acque reflue nere convogliate in fognatura e i volumi trattati dagli impianti di depurazione.

Considerando singolarmente gli oltre 200 casi disponibili emerge che il rapporto percentuale tra volume sfiorato e volume di pioggia raccolto dalle reti si attesta mediamente attorno al 70%.

Per la stima delle concentrazioni di metalli sversati dagli sfioratori di piena e dalle reti bianche si è fatto riferimento sia a dati sperimentali sia a dati di bibliografia.

Le concentrazioni di metalli misurate in uscita dagli scaricatori di piena sono notevolmente variabili. Per il calcolo dei quantitativi di metalli sversati dagli sfioratori o dalle reti bianche sono state utilizzate le *concentrazioni medie* riportate in Tabella 2.20, ottenute dall'analisi delle informazioni raccolte, moltiplicate per la stima delle portate sfiorate.

La valutazione è stata effettuata solo per gli agglomerati di consistenza maggiore o uguale a 2.000 AE, in quanto si ritiene che nelle piccole località le fonti di generazione di questi inquinanti non siano rilevanti in relazione alla scala regionale dello studio.

Tabella 2.20 Plausibili concentrazioni medie e corrispondenti stime dei carichi sversati di metalli dalle reti fognarie durante gli eventi meteorici

Parametro	Concentrazione media ottenuta dalle informa_ zioni disponibili (mg/l)	Stima volume idrico mediamente scaricato (Mm³/anno)	Carico regionale (t/anno)	Concentrazione media dopo taratura del modello regionale complessivo (mg/l)
Cadmio	0,0002	(Min /anio)	0,08	0.0003
Cromo totale	0.013		0.86	0.003
Nichel	0.012	285	4.27	0.015
Piombo	0,015		0,86	0.003
Rame	0,05		14,3	-
Zinco	0,15		42,8	0.15

2.2 COMPARTO INDUSTRIALE

Le analisi e le valutazioni relative al comparto industriale, realizzate con riferimento al territorio regionale, sono sempre state focalizzate sulle attività manifatturiere, ritenendo non pertinenti e/o marginali e/o di difficile stima gli usi connessi alle attività estrattive, alla produzione di energia, gas e vapore e alla gestione del ciclo idrico integrato e dei rifiuti.

Il criterio adottato per individuare le attività industriali da considerare, fa qui riferimento alla condizione che la risorsa idrica prelevata venga restituita con caratteristiche qualitative apprezzabilmente più scadenti. Non vengono considerate le attività connesse al Servizio Idrico Integrato, risultando analizzate nell'ambito della depurazione civile.

Le basi dati disponibili per la valutazione dei carichi di inquinanti sversati in corpo idrico superficiale (CIS) e pubblica fognatura (PF) sono riferibili a:

- autorizzazioni allo scarico in corpo idrico superficiale (CIS);
- autorizzazioni allo scarico in pubblica fognatura (PF);
- fatturazioni del servizio di fognatura e depurazione;
- Report AIA;
- monitoraggi ARPA.

2.2.1 Aspetti metodologici e criticità

Grazie alla mole di dati e informazioni connessa alla disponibilità dei report AIA si è ritenuto opportuno superare alcune criticità presenti negli approcci metodologici seguiti nel passato, in particolare:

- si cerca di considerare correttamente la differenziazione dei volumi prelevati e scaricati e, in mancanza di dati misurati, si procede con valutazioni parametriche del rapporto volumi prelevati/volumi scaricati; nel passato gli scarichi venivano ritenuti assimilabili, in termini quantitativi, ai prelievi; generalmente tale ipotesi non è, evidentemente, corretta;
- qualora non si riescano a caratterizzare qualitativamente gli scarichi in corpo idrico superficiale per i singoli siti in relazione ai monitoraggi, viene fatto riferimento a standard di emissione definiti per le principali tipologie di attività produttive; nel passato le concentrazioni allo scarico venivano poste pari ai limiti ammessi dalla normativa: tale ipotesi derivava dalla ridotta disponibilità di dati di concentrazioni presenti sugli scarichi;
- l'utilizzo di standard di consumo per addetto per la stima di prelievi e scarichi è tuttora imprescindibile, qualora non siano disponibili dati misurati, seppure con la consapevolezza che una metodologia più corretta farebbe riferimento a valutazioni basate su standard di consumo / emissione per unità di prodotto (e non per addetto);
- vengono differenziate le acque di raffreddamento relative a spurghi da quelle connesse a raffreddamento a ciclo aperto; nel passato alle acque di scarico indicate come reflui di

raffreddamento non venivano associati carichi di inquinanti; tale ipotesi è accettabile nel caso di raffreddamento a ciclo aperto, non lo è invece nel caso di raffreddamento a ciclo chiuso; gli spurghi sono infatti caratterizzati da elevate concentrazioni saline (se le acque non sono preliminarmente demineralizzate) e dalla presenza di additivi;

• si fa riferimento a tutte le attività produttive ricadenti, secondo la classificazione Ateco 2007, nell'industria; nel passato si faceva riferimento essenzialmente al comparto manifatturiero, identificandolo con quello industriale.

Ai fini della valutazione degli apporti inquinanti in CIS connessi al settore industriale si sono considerati gli scarichi di acque di raffreddamento, civili, di processo, miste, relativamente a:

- tutti i siti autorizzati AIA;
- tutti i restanti siti con volume scaricato (stimato) non inferiore a 5.000 m³/anno.

Nella Tabella 2.21 sono sintetizzate le modalità di valutazione dei volumi scaricati e delle relative concentrazioni di inquinanti, in relazione alla disponibilità di dati e informazioni.

Tabella 2.21 Modalità di caratterizzazione dei prelievi e degli scarichi per i diversi siti produttivi

"Categoria d	i sito	Geolocaliz						Emis	sioni					
produttivo	produttivo" _ zazione				Volumi					Co	oncent	razio	ni	
Siti autorizzati A	AIA con	Georeferenzi	Dati n	nonitora	ggio	report	istica	AIA	Dati	monitor	aggio	repo	ortistica	AIA
scarico in CIS (cir	ca 100)	ati i singoli	(sono po	ossibili p	iù sca	richi p	er sito)		(sono	possibili	più sca	arichi	per sito))
Siti non AIA a	utorizzati	siti con	Da dati	docume	ntati o	o da au	ıtorizza	azioni	Dai r	nonitorag	gi ARI	PA (c	irca 80	siti) o
allo scarico in C	IS (circa	precisione	o da st	ime par	rametr	riche (differe	nziate	da sti	ime parar	netrich	e (dif	ferenzia	te per
700) 200~500 m per Divisione				sione, G	ruppo	o Clas	sse ATI	ECO)	Divis	ione, Gru	рро о (Classe	e ATECO	O)
		Stime parame												
Volumi scaricati	Utilizzo	di standard	di scari	co per	Basi	dati	di rife	erimen	to pe	r la val	utazioi	ne de	egli star	ndard:
	addetto (e/o per unità di	prodotto).	repor	tistica	AIA, I	Dichiar	azioni	i Ambien	tali EN	IAS,	autorizz	azioni
	allo scarico, altri dati di scarico noti.													
Concentrazioni	Utilizzo	di valori medi	per i pa	rametri	Basi	dati	di ri	iferime	ento:	reportist	ica A	JA,	Dichiara	azioni
allo scarico	di interes	se differenziate	per sette	ore.	Ambi	entali l	EMAS.	, moni	toragg	i ARPA.				

2.2.2 Analisi dati di consumo ed emissione per la valutazione di standard di consumo / emissione per addetto/unità di prodotto

L'obiettivo del lavoro era quello di giungere a disporre di standard di consumo/emissione per specifica tipologia di attività produttiva, permettendo di migliorare e aggiornare le stime dei prelievi dall'ambiente e degli scarichi di inquinanti anche per le aziende che non superano le soglie dimensionali previste dalla normativa IPPC. Gli standard riguardano sia i fattori "quantitativi", ovvero i volumi idrici consumati e scaricati per unità di prodotto/materia prima lavorata e/o addetto, che "qualitativi", ovvero concentrazioni/carichi di inquinanti "tradizionali" e di sostanze pericolose.

La definizione degli standard di consumo/emissione è condizionata dalla qualità e quantità di dati e informazioni disponibili, che incide sia sul grado di dettaglio della codifica Ateco (e quindi delle specifiche attività produttive) per la quale è risultato possibile specificare gli standard, sia sulla affidabilità dei valori stessi. Anche per tipologie di attività produttive relativamente omogenee, gli specifici processi produttivi presenti nei diversi siti possono comportare fattori di consumo ed emissione molto diversi fra loro; gli standard individuati portano quindi alla possibilità di produrre stime di consumo ed emissione anche per le aziende per le quali non risultano disponibili dati, ma tali stime sono inevitabilmente affette da margini di incertezza non trascurabili.

- Indicatori di consumo ed emissione traibili dai report AIA

Le elaborazioni condotte sui dati estratti dai report AIA, finalizzate ad individuare indicatori e parametri di riferimento, hanno previsto il calcolo dei seguenti indicatori con riferimento alle principali tipologie di attività produttive:

- dotazione idrica per unità di prodotto o materia prima generalmente metri cubi di acqua/tonnellate di prodotto o materia prima;
- dotazione idrica per addetto espressa in litri/addetto giorno;
- rapporto scarichi/approvvigionamenti;
- *concentrazione media allo scarico dei parametri inquinanti* calcolabile solo per gli inquinanti monitorati e con valori superiori ai relativi LOQ.

Nella Tabella 2.22 sono riportati i valori medi relativi agli inquinanti "tradizionali" ovvero fosforo totale e forme azotate. Il dataset elaborato è, per alcune tipologie di scarico, decisamente ridotto: in questo caso i valori proposti nella tabella sono da considerarsi attendibili solo in termini di ordine di grandezza.

Tabella 2.22 Concentrazioni medie degli "inquinanti tradizionali" allo scarico in CIS (mg/l)

	Parametro	Ptot	N-NH ₄	N-NO ₂	N-NO ₃
Limite emissione Ta	ab 3 Allegato V DLgs 152/06	10 (1 in aree sensibili)	15	0.6	20
Domestiche	Tutte	1.45	1.99	0.10	3.65
Raffreddamento	Tutte	0.52	1.02	0.10	2.79
	Alimentari	1.71	1.87	0.08	0.88
Meteoriche	Chimiche		0.56	0.01	0.41
Meteoriche	Metalmeccaniche	< 0.5	0.46	0.32	2.42
	Rifiuti	0.72	3.80	0.11	1.99
	Macellazione e lavorazione carni	2.73	2.6	0.11	8.5
	Salumifici	4.06	3.6	0.22	4.1
	Conserve vegetali	1.29	0.7	0.42	2.3
	Lavorazione grassi	1.92	2.8	0.05	2.5
	Caseifici	4.61	1.1	0.16	4.9
	Lavorazione latte industriale	0.56	0.4	0.15	3.3
	Molitura e mangimi	1.52	2.5	0.07	9.0
	Distillazione	0.09	0.9	0.03	0.9
	Vinificazione	0.91	0.3	0.02	10.5
Processo	Acque minerali	0.43	0.03	0.01	1.2
	Altre alimentari	0.90	0.7	0.04	0.5
	Lavorazione legno		< 0.08		2.8
	Cartiere	1.43	0.2	0.24	5.9
	Chimica e farmaceutica	0.23	2.7	0.13	3.0
	Laterizi	0.35	0.9	0.16	4.0
	Siderurgia e fonderia				2.7
	Trattamento metalli	0.11	0.5	0.07	3.0
	Altre manifatturiere	0.68	1.2	0.15	2.8
	Rifiuti	0.67	1.6	0.19	3.2

Le concentrazioni evidenziabili per gli scarichi di tipo produttivo sono molto diversificate. Le tipologie di attività con scarichi "più puliti" (con riferimento agli inquinanti tradizionali), ad esempio trattamento metalli e lavorazione industriale del latte, presentano concentrazioni dell'ordine del 10% di quelle ammissibili; le attività con scarichi "meno puliti", ad esempio caseifici e salumifici, presentano concentrazioni dell'ordine del 30% di quelle ammissibili.

Nella Tabella 2.23 sono riportati i valori medi riscontrati nelle concentrazioni allo scarico delle acque di processo per i metalli considerati, in relazione alla redazione di bilanci di massa alla scala di bacino; si sottolinea come i valori riportati derivino frequentemente da basi dati molto ridotte e siano quindi da intendersi come puramente orientativi.

Tabella 2.23 Valori medi delle concentrazioni dei metalli allo scarico delle acque di processo in CIS per alcune tipologie di attività (mg/l)

Parametro	Cd	Cr	Ni	Pb	Zn
Limite emissione Tab 3					
Allegato V DLgs 152/06	0.02	2	2	0.2	0.5
Macellazione e lav. carni	0.0036	< 0.02	0.026	0.055	0.098
Salumifici					0.07
Conserve vegetali	0.0029	0.008	0.008	0.009	0.06
Caseifici					0.036
Lav. latte industriale		0.006			0.071
Vinificazione					0.121
Altre alimentari					0.163
Cartiere					0.08
Chimica e farmaceutica	< 0.01	0.015	0.037	< 0.05	0.057
Laterizi		0.006		0.001	
Siderurgia e fonderia	< 0.001	0.008	0.058	0.007	0.085
Trattamento metalli	< 0.001	< 0.02	0.054	< 0.02	0.076
Altre manifatturiere	< 0.001	0.032	0.02	< 0.02	0.077
Rifiuti	< 0.001	< 0.01	0.043	< 0.02	0.046
Lavorazione grassi, molitus	ra e mangimi, distil	lazione, acque mine	erali, lavorazione le	gno con valori tutti 1	nulli

2.2.3 Le emissioni di inquinanti

L'approccio alla stima delle emissioni dei siti di interesse individuati è la seguente:

- per le aziende autorizzate AIA sono attribuiti agli scarichi i volumi idrici e le relative concentrazioni di inquinanti deducibili dai report annuali; quando i volumi idrici non sono indicati nei report, si fa riferimento ai consumi e al rapporto scarichi/approvvigionamenti;
- per le aziende non AIA, ma oggetto di controlli ARPA, si fa riferimento alla caratterizzazione qualitativa degli scarichi deducibile dai controlli stessi; riguardo i quantitativi idrici sono messi a confronto i consumi (se noti) e gli scarichi autorizzati (se indicati nell'archivio delle Autorizzazioni), attribuendo il valore ritenuto maggiormente rappresentativo;
- per le aziende non AIA e non oggetto di controlli ARPA, si fa riferimento ad una caratterizzazione qualitativa parametrica, in relazione alla tipologia di attività svolta; riguardo ai quantitativi idrici vale quanto detto al punto precedente.

È stato prodotto uno specifico data-base per i circa 840 scarichi considerati, che per ciascuno indica: localizzazione, corpo idrico recettore, volume scaricato e carichi di forme azotate, fosforo e metalli.

- Gli inquinanti tradizionali

Nella Tabella 2.24 sono proposte le stime dei volumi idrici scaricati in CIS e dei relativi carichi associati di inquinanti "tradizionali" (P, N e forme azotate), ripartiti sulle diverse province.

Tabella 2.24 Stima dei volumi idrici e carichi di inquinanti tradizionali di origine industriale scaricati in CIS al 2010 (t/anno)

Provincia	Volume (Mm³/anno)	P tot	N tot	N-NH ₄	N-NO ₂	N-NO ₃
Piacenza	7.7	4.4	18.2	8.7	2.0	9.4
Parma	28.7	27.8	65.7	40.9	6.1	27.7
Reggio-Emilia	6.0	4.4	12.9	6.1	2.8	5.4
Modena	7.5	6.0	17.6	7.9	1.4	10.0
Bologna	5.5	3.5	15.8	8.1	0.9	8.5
Ferrara	9.3	2.8	17.9	7.9	0.5	11.3
Ravenna	19.5	9.5	73.8	28.5	3.3	48.3
Forlì-Cesena	4.4	3.4	20.7	3.5	0.3	17.7
Rimini	1.3	0.5	2.1	1.3	0.4	0.7
Totale	90	62	245	113	18	139
Totale solo manifattura	62	55	212	73	16	123

Nonostante gli scarichi AIA siano numericamente solo il 20% degli scarichi complessivi, ad essi sono riferibili oltre il 60% dei carichi sversati di P e N.

Gli scarichi realmente significativi sono pochi: in relazione alla base dati implementata, ai 29 scarichi di entità superiore a 0.5 Mm³/anno (3.5% rispetto al totale in termini di numero) sono riferibili il 50% dei volumi scaricati e una analoga quota dei carichi di P e N.

- I metalli considerati nella redazione dei bilanci di massa

Nella Tabella 2.25 sono proposte le stime dei volumi idrici scaricati in CIS e dei relativi carichi associati di metalli pesanti, ripartiti sulle diverse province.

Tabella 2.25 Stime dei volumi idrici e dei carichi di metalli sversati in CIS al 2010 (t/anno)

Provincia	Volume (Mm³/anno)	Cd	Cr	Ni	Pb	Zn
Piacenza	7.7	0.000	0.089	0.074	0.014	0.26
Parma	28.7	0.006	0.168	0.114	0.079	0.33
Reggio-Emilia	6.0	0.001	0.049	0.018	0.028	0.29
Modena	7.5	0.003	0.030	0.041	0.027	0.19
Bologna	5.5	0.000	0.008	0.009	0.005	0.08
Ferrara	9.3	0.000	0.104	0.030	0.009	0.16
Ravenna	19.5	0.000	0.063	0.243	0.013	0.70
Forlì-Cesena	4.4	0.000	0.001	0.081	0.055	0.28
Rimini	1.3	0.000	0.003	0.004	0.001	0.03
Totale	90	0.01	0.51	0.61	0.23	2.31

Non raramente i quantitativi autorizzati in CIS risultano considerevolmente superiori a quelli effettivamente scaricati, quando valutabili; fare riferimento alle autorizzazioni allo scarico porterebbe frequentemente ad una forte sovrastima dei volumi scaricati in CIS.

- Le altre sostanze inserite nell'Inventario

Per tali sostanze, elencate nella Tabella 1\A e nella Tabella 1\B dell'Allegato 1 alla Parte III del D.Lgs. 152/2006, si fa riferimento alle risultanze delle attività svolte per la redazione dell'Inventario dei rilasci da fonte diffusa, degli scarichi e delle perdite.

2.3 CARICHI CONNESSI ALL'ITTICOLTURA

In Emilia-Romagna sono presenti due tipologie di allevamenti ittici: una utilizza vasche per produzioni intensive e si approvvigiona derivando acqua dai fiumi, l'altra riguarda l'itticoltura condotta in acque di transizione; per questa seconda tipologia, sono utilizzati sia specchi d'acqua

circoscritti per la crescita del novellame, sia ampie zone vallive idonee ad una produzione maggiormente estensiva, con rifornimenti sia di acque dolci dalle aste interne sia di acque salmastre da canali in collegamento con il mare.

L'itticoltura prevede l'uso di mangimi ricchi di azoto e fosforo, solo in parte assimilati dai pesci, il restante, circa il 70-80%, viene escreto in acqua. Circa l'80-85% di azoto e il 20% di fosforo sono solubili, la quota restante non solubile, precipita e si deposita sul fondo.

Come riportato in letteratura, considerando i contenuti medi di N e P nelle diete ittiche, si valutano rilasci di azoto e fosforo solubili in acqua, pari a $0.05 \div 0.10$ kg N/ kg pesce prodotto e $0.003 \div 0.005$ kg P/kg pesce prodotto.

Partendo dalle concessioni di derivazione ad uso ittico, dalla localizzazione (orto-foto) dei laghetti/vasche/valli di allevamento, misurando le dimensioni degli impianti e valutando il tipo di acquacoltura, si è pervenuti ad una stima del pesce prodotto annualmente e del volume idrico impiegato.

Dal prodotto tra la stima della produzione annua per impianto (in kg/anno di pesce) e la valutazione degli apporti unitari di Azoto e Fosforo (in kg di N e P per kg di pesce) si ottiene il possibile "scarico" (in kg/anno) di Azoto e Fosforo. I dati sono riportati in Tabella 2.26.

Nel complesso, la produzione regionale è valutata in circa 650 t/anno su 48 impianti. Una indagine per l'anno 2008 da fonte ISPRA su dati MiPAAF (Ministero delle politiche alimentari e forestali) – Consorzio UNIMAR, forniva un dato, per la Regione Emilia-Romagna, di 517 tonnellate per 44 impianti.

Tabella 2.26 Stima annua della produzione regionale di pesce d'acqua dolce/salmastra e corrispondenti carichi di nutrienti apportati ai corpi idrici superficiali

	Produzione	N	P
	(t/anno)	(t/anno)	(t/anno)
Distretto del F. Po (Emilia) - al netto delle acque di transizione ferraresi	344	25.8	1.4
Distretto Appennino Settentrionale (Bologna + Romagna)	70	5.3	0.28
Valli ferraresi	231	17.3	0.92
TOTALE	646	48.4	2.6

3. LA VALUTAZIONE DEI CARICHI DIFFUSI APPORTATI AI SUOLI

Gli apporti al suolo, da considerarsi come contributi diffusi, non identificabili, quindi, come fonti puntuali georeferenziabili sul territorio, provengono principalmente dalle usuali pratiche agronomiche e in misura più ridotta dalle ricadute atmosferiche e dal comparto domestico.

Relativamente agli apporti al suolo del settore agrozootecnico sono stati considerati i nutrienti e i fitofarmaci.

Per la valutazione degli *apporti al suolo di azoto, fosforo e fitofarmaci*, a seguito delle pratiche agronomiche, la base informativa di partenza è il 6° Censimento ISTAT dell'Agricoltura, aggiornato al 2010, che fornisce i dati, a livello comunale, delle superfici coltivate e delle tipologie di colture presenti, nonché della consistenza del comparto zootecnico.

E' analizzato anche l'apporto all'inquinamento diffuso da parte dello spandimento in agricoltura dei fanghi provenienti dagli impianti di trattamento delle acque reflue urbane e dalle attività agroalimentari.

3.1 I NUTRIENTI APPORTATI AI SUOLI DAL SETTORE AGROZOOTECNICO

La stima degli apporti al suolo di sostanze organiche e nutrienti di origine antropica fa riferimento ad una metodologia che può essere riassunta nella quantificazione del bilancio delle sostanze nutritive tra fabbisogni delle colture e disponibilità.

In particolare, sono determinati i quantitativi di azoto e fosforo ritenuti necessari alla crescita delle colture effettivamente praticate sul territorio regionale, a fronte dei quantitativi resi disponibili dalle principali fonti, costituite da effluenti zootecnici, fanghi degli impianti di trattamento dei reflui civili e fertilizzanti di sintesi.

3.1.1 Stima del fabbisogno delle colture

Nello schema che segue si sintetizza il percorso seguito per stimare le necessità di azoto e fosforo delle varie colture praticate sul territorio regionale:

- 1. raccolta dei dati relativi all'incidenza di ciascuna coltura sulle superfici agricole di ogni comune della regione, utilizzando le informazioni del 6° Censimento generale dell'agricoltura del 2010;
- 2. individuazione delle rese delle colture, espresse in tonnellate di prodotto per unità di superficie, modulate per ciascuna regione agraria;
- 3. determinazione dei quantitativi complessivi prelevati dal sistema da parte delle colture, sulla base di dati agronomici relativi alle quantità di nutrienti assorbiti dalle piante per sviluppare le loro funzioni vegetative, espresse in chilogrammi di azoto e fosforo per tonnellata di prodotto.

I dati del Censimento 2010 sono stati elaborati, a livello comunale, allo scopo di ridurre la notevole disaggregazione colturale, e giungere ad una articolazione più funzionale, presentata in Tabella 3.1.

Tabella 3.1 Estensione delle diverse classi colturali di riferimento

Classi di colture	Totale regione	Classi di colture	Totale regione	Classi di colture	Totale regione
	(ha)		(ha)		(ha)
Mais	97.629	Pomodoro	27.359	SAU TOTALE	1.064.214
Frumento	223.752	Ortive	22.946	Pioppete	3.024
Orzo	22.282	Erba medica	251.242	Boschi	171.551
Sorgo	27.764	Erbai	47.434	Altra superficie	121.973
Patata	5.321	Altri seminativi – cereali	55.995	SAT TOTALE	1.360.762
Barbabietola	25.310	Vite e Olivo	59.716	SUP TOTALE	2.245.149
Girasole	5.475	Fruttiferi	67.454		
Soia	21.975	Prati e pascoli	102.561		

- Regioni agrarie e rese colturali

La stima dei fabbisogni colturali è basata sulla resa, ovvero sulla quantità di prodotto ottenuto per unità di superficie coltivata. La resa di una coltura non è omogeneamente distribuita sul territorio, ma presenta differenze legate all'altimetria, all'andamento climatico locale, alle caratteristiche pedologiche, etc. Si tiene conto della diversificazione suddividendo il territorio in regioni agrarie. In Emilia-Romagna le regioni agrarie sono 47; nella **Tabella 3.3** sono fornite le rese medie regionali, delle varie colture considerate, espresse in t/ha/anno.

- Quantitativi di azoto e fosforo asportati dalle colture

Nella Tabella 3.2 sono riportati i quantitativi di azoto e fosforo, per unità di prodotto, che il sistema colturale dovrebbe "prelevare" dall'ambiente circostante, per sostenere i propri processi vegetativi.

Tabella 3.2 Quantitativi di azoto e fosforo asportati/assorbiti annualmente espressi in kg/tonnellata di prodotto

Classi di colture	Azoto	Fosforo	Classi di colture	Azoto	Fosforo
	(kg/t)	(kg/t)		(kg/t)	(kg/t)
Mais	22.7	4.4	Erba medica	20.6	2.3
Frumento	25.9	4.4	Erbai	20.7	2.4
Orzo	22.4	4.3	Altri seminativi - cereali	20.0	4.1
Sorgo	24.7	4.1	Vite e Olivo	6.0	1.2
Patata	4.2	0.7	Fruttiferi	5.0	0.4
Barbabietola	3.1	0.6	Prati e pascoli	20.0	2.6
Girasole	43.1	8.3	Pioppeti	0.3	0.1
Soia	63.0	7.7	Boschi	0.15	0.1
Pomodoro	2.6	0.6	Altra superficie	0.1	0.04
Ortive	5.0	0.9			

Partendo dall'estensione comunale dei vari gruppi colturali considerati, dalle rese diversificate sul territorio regionale e considerando i coefficienti unitari di asportazione, si perviene alla stima della quantità di azoto e fosforo utilizzato dalle colture, per ottenere le rese individuate (dati regionali in Tabella 3.3).

Tabella 3.3 Quantitativi di azoto e fosforo asportati/assorbiti annualmente dalle colture

Colture	Superficie	Resa media	Asport	azione
	(ha)	(t/ha/anno)	Azoto	Fosforo
	(na)	(t/Ha/aHHO)	(t/anno)	(t/anno)
Mais	97.629	10.3	22,811	4,388
Frumento	223.752	5.8	33,806	5,757
Orzo	22.282	4.4	2,216	423
Sorgo	27.764	7.9	5,451	92
Patata	5.321	37.3	916	152
Barbabietola	25.31	62.7	4,922	971
Girasole	5.475	3.2	760	146
Soia	21.975	3.8	5,198	634
Pomodoro	27.359	63.3	4,949	1,081
Ortive	22.946	33	3,784	66
Erba medica	251.242	10	46,580	5,233
Erbai	47.434	10	8,837	1,025
Altri seminativi – cereali	55.995	4	4,480	91
Vite e Olivo	59.716	17.6	6,322	1,242
Fruttiferi	67.454	20	6,726	587
Prati e pascoli	102.561	8	16,410	2,150
Pioppeti	3.024	100	91	39
Boschi	171.551	100	2,573	1,029
Altra superficie	121.973	1.5	18	7
Totale regionale	1.360.762		176,850	27,353

- Quantitativi teorici di nutrienti da apportare

Sono stati definiti i quantitativi complessivi di azoto e fosforo che le colture devono prelevare dall'ambiente circostante, al fine di garantire le rese medie riscontrate nelle diverse regioni agrarie. La stima del quantitativo di azoto necessario alla crescita delle colture, deve tenere conto del fatto che alcune leguminose, come l'erba medica e la soia, significative per diffusione a livello regionale, sono autosufficienti, essendo in grado di sfruttare l'azoto atmosferico.

Inoltre, nel bilancio dei nutrienti, occorre tenere conto delle quote di azoto e fosforo presenti nel suolo per la mineralizzazione della sostanza organica, derivante dai residui colturali incorporati nel terreno. Tale contributo al ciclo degli elementi nutritivi nel suolo, è presente in misura variabile, in funzione delle tipologie di suolo e della storia agronomica di ciascun campo.

Nella Tabella 3.4 si riportano, a livello regionale e per le singole colture, i quantitativi di azoto e fosforo che occorre apportare alle diverse colture. La differenza rispetto a quanto valutato nella Tabella 3.3 è dovuta al fatto che per soia e erba medica gli apporti azotati si sono assunti nulli, mentre per "Boschi" e "Altra superficie" non si sono valutati apporti di fertilizzanti di alcun tipo.

Tabella 3.4 Azoto e fosforo da apportare annualmente alle colture

Colture		Azoto			Fosforo	
	Da apportare	%	Da apportare per ha	Da apportare	%	Da apportare per ha
	(t/anno)		(kg/ha/anno)	(t/anno)		(kg/ha/anno)
Mais	22,811	18,6	234	4,388	16,7	45
Frumento	33,806	27,6	151	5,757	21,9	26
Orzo	2,216	1,8	99	423	1,6	19
Sorgo	5,451	4,5	196	92	3,5	33
Patata	916	0,7	172	152	0,6	29
Barbabietola	4,922	4,0	194	971	3,7	38
Girasole	760	0,6	139	146	0,6	27
Soia	0	0,0	0	634	2,4	29
Pomodoro	4,949	4,0	181	1,081	4,1	39
Ortive	3,784	3,1	165	66	2,5	29
Erba medica	0	0,0	0	5,233	19,9	21
Erbai	8,837	7,2	186	1,025	3,9	22
Altri seminativi – cereali	4,480	3,7	80	91	3,5	16
Vite e Olivo	6,322	5,2	106	1,242	4,7	21
Fruttiferi	6,726	5,5	100	587	2,2	9
Prati e pascoli	16,410	13,4	160	2,150	8,2	21
Pioppeti	91	0,1	30	39	0,1	13
Boschi	0	0,0	0	0	0,0	0
Altra superficie	0	0,0	0	0	0,0	0
Totale Regione	122,480	100,0		26,316	100,0	

3.1.2 Stima del contributo da fonti di nutrienti

Valutati gli apporti complessivi di azoto e fosforo, che occorre garantire alle colture per ottenere le rese considerate, bisogna individuare quali e quante sono le disponibilità nell'ambito delle usuali pratiche agronomiche.

Le fonti possibili di sostanze nutritive sono:

- effluenti zootecnici;
- fanghi di depurazione provenienti da impianti di trattamento delle acque reflue urbane e da industrie agro-alimentari;
- fertilizzanti di sintesi.

Carichi di origine zootecnica

La metodologia per la stima delle disponibilità di azoto e fosforo dal comparto zootecnico presente in regione prevede i passaggi sottoelencati:

- raccolta dei dati sulla consistenza di ciascuna specie, in termini di numero di capi allevati, in ogni comune della regione, prendendo come riferimento il Censimento generale ISTAT dell'agricoltura 2010. Si è limitato lo studio a bovini, suini e avicoli, trascurando il contributo di equini, conigli e ovi-caprini che rappresentano non più del 2% del carico regionale di origine zootecnica;
- 2. per le specie considerate il Censimento ISTAT fornisce i dati in base ad una articolazione per classi di età o tipologie produttive. Al fine di trasformare il numero di capi allevati in peso vivo animale si è passati attraverso il peso vivo unitario (per capo) di ciascuna classe (fonti: Regolamento Regionale n. 1/2011, Banca Dati Nazionale zootecnica) (Tabella 3.5);
- 3. per la definizione dei quantitativi di azoto contenuti negli effluenti zootecnici prodotti in regione, come disponibilità al campo, sono stati utilizzati i valori unitari, espressi in chilogrammi per tonnellata di peso vivo allevato, ricavati dall'allegato I del "Regolamento regionale ai sensi dell'articolo 8 della legge regionale 6 marzo 2007, n. 4. Disposizioni in materia di utilizzazione agronomica degli effluenti di allevamento e delle acque reflue derivanti da aziende agricole e piccole aziende agro-alimentari" del 28 ottobre 2011;

4. il carico fosfatico proveniente dall'utilizzazione agronomica dei reflui zootecnici è stato valutato a partire dai pesi vivi dei capi allevati, a cui sono stati applicati i coefficienti medi tratti dal "Manuale Liquami Zootecnici" CRPA, 2001.

Tabella 3.5 Consistenza del settore zootecnico e peso vivo complessivo per le diverse specie

Provincia	Bovini allevati	Peso vivo complessivo	Suini allevati	Peso vivo complessivo	Avicoli allevati	Peso vivo complessivo
	(n °)	(t)	(n °)	(t)	(n °)	(t)
Piacenza	79.766	38.136	120.074	8.042	414.765	736
Parma	150.122	74.246	111.889	9.031	318.718	615
Reggio-Emilia	140.426	67.944	332.168	29.430	1.619.682	1.829
Modena	95.069	46.353	338.238	25.327	889.259	1.752
Bologna	33.392	15.715	75.340	6.316	3.997.783	4.366
Ferrara	22.022	10.487	46.917	3.245	1.384.743	5.567
Ravenna	8.851	3.957	58.439	3.908	5.215.960	8.150
Forli'-Cesena	19.477	9.109	149.918	12.644	13.863.889	25.474
Rimini	9.107	4.066	14.477	998	542.091	710
Totale Regione	558.232	270.014	1.247.460	98.941	28.246.890	49.201

Nella Tabella 3.6 si riporta una sintesi dei dati comunali, con aggregazione a livello provinciale e regionale, in termini di carichi annui di azoto e fosforo al campo.

Tabella 3.6 Carichi annui di azoto e fosforo al campo, al netto delle perdite di stoccaggio, prodotti dalle diverse specie allevate

Provincia	Bovini ((t/anno)	Suini (t/anno)		Avicoli	(t/anno)	Totale (t/anno)
	Azoto	Fosforo	Azoto	Fosforo	Azoto	Fosforo	Azoto	Fosforo
Piacenza	4.507	1.811	875	410	126	88	5.507	2.311
Parma	9.352	3.526	980	461	100	74	10.433	4.062
Reggio Emilia	8.489	3.227	3.159	1.480	404	228	12.052	4.936
Modena	5.604	2.202	2.734	1.294	295	210	8.633	3.706
Bologna	1.733	746	644	302	1.194	596	3.572	1.645
Ferrara	1.021	498	356	166	3.150	3.037	4.528	3.701
Ravenna	441	188	428	200	3.045	1.737	3.914	2.125
Forli'-Cesena	857	433	1.359	646	2.218	1.244	4.434	2.323
Rimini	411	193	108	51	144	85	662	329
Totale Regione	32.415	12.824	10.643	5.010	10.676	7.299	53.735	25.138

Fanghi da impianti di trattamento civili e industrie agro-alimentari

Esistono due tipologie di fango normalmente utilizzate in agricoltura:

- i fanghi biologici derivanti dalla depurazione delle acque reflue provenienti da insediamenti civili;
- i fanghi provenienti da depuratori asserviti ad industrie agroalimentari di natura prevalentemente organica.

Sulla base delle informazioni disponibili in merito alle autorizzazioni che le diverse Province hanno rilasciato, è stato possibile valutare i quantitativi di nutrienti apportati al suolo nei singoli comuni. La Tabella 3.7 mostra i dati complessivi a livello regionale e una loro disaggregazione a livello provinciale.

Tabella 3.7 Superficie utilizzata per lo spandimento dei fanghi degli impianti di trattamento e delle industrie agro-alimentari, quantità di azoto e fosforo applicati ai suoli – anno 2010

Provincia	SAU	SAU utilizzata	Azoto	Fosforo
	(ha)	(ha)	(t/y)	(t/y)
Piacenza	117.460	715	181	57
Parma	125.703	1.372	152	62
Reggio-Emilia	101.849	1.681	276	183
Modena	127.496	912	168	89
Bologna	173.224	1.615	204	65
Ferrara	176.876	716	101	39
Ravenna	116.647	3.705	609	191
Forli'-Cesena	89.358	80	15	5
Rimini	35.601	122	15	9
Totale Regione	1.064.214	10.917	1.721	701

Fertilizzanti chimici di sintesi

All'interno del bilancio dei nutrienti, gli apporti dei fertilizzanti di sintesi sono stati stimati, a livello comunale, cercando di ricostruire la modalità di soddisfacimento del fabbisogno colturale di nutrienti prima tramite i fertilizzanti organici (effluenti zootecnici e fanghi) e, qualora non sufficienti, con i fertilizzanti di sintesi. Inoltre si sono considerate due ulteriori variabili:

- a) la disponibilità di differenti forme di fertilizzanti organici, essenzialmente riconducibili ad effluenti di origine bovina, suinicola e avicola, con possibilità applicative diversificate;
- b) la predisposizione dissimile delle colture ad essere fertilizzate con il liquame suinicolo.

La gestione dei reflui zootecnici nel loro insieme, ovvero palabili e liquidi, avviene attraverso l'individuazione di una quota parte di Superficie Agricola Utile (SAU) sulla quale è effettuato l'effettivo spandimento di tutti i reflui.

Portando a sintesi le "Comunicazioni per l'utilizzazione agronomica degli effluenti" pervenute attraverso la procedura informatica (dati 2012), si è ottenuta una valutazione, sia pure parziale (2/3 dell'effettivo), delle superfici utilizzate nelle varie province per lo spandimento dei reflui zootecnici. Dall'analisi delle comunicazioni è stato possibile calcolare un valore medio provinciale del carico di azoto distribuito, per ettaro di terreno soggetto a spandimento (prima colonna numerica di Tabella 3.8). Il valore così stimato si è utilizzato per valutare la superficie complessiva soggetta a spandimento.

Tabella 3.8 Stima della estensione della SAU utilizzata per lo spandimento effettivo dei reflui zootecnici a livello regionale e provinciale

Provincia	Carico medio	SAU totale	SAU utilizzata	SAU utilizzata/SAU
	(kg/ha)	(ha)	(ha)	
Piacenza	138	117.460	39.771	0,34
Parma	178	125.703	58.653	0,47
Reggio-Emilia	226	101.849	53.273	0,52
Modena	160	127.496	54.058	0,42
Bologna	149	173.224	23.963	0,14
Ferrara	112	176.876	40.543	0,23
Ravenna	144	116.647	27.154	0,23
Forli'-Cesena	153	89.358	28.964	0,32
Rimini	99	35.601	6.711	0,19
Totale Regione	161	1.064.214	333.091	0,31

Per effetto della limitatezza delle superfici previste per l'applicazione dell'intera disponibilità zootecnica, è stato necessario aumentare il contributo dei fertilizzanti chimici, rispetto ai quantitativi teorici strettamente necessari, per soddisfare fabbisogni altrimenti privi di copertura, non essendo raggiunti dagli spandimenti zootecnici (Tabella 3.9). Inoltre si è tenuto conto delle limitazioni connesse ai due aspetti a) e b) precedentemente citati.

Tabella 3.9 Quantitativi teorici ed effettivi di fertilizzanti chimici da applicare ai suoli agricoli

Provincia	Chimico	teorico	Chimico	effettivo
	Azoto	Fosforo	Azoto	Fosforo
	(t/y)	(t/y)	(t/y)	(t/y)
Piacenza	9.538	1.056	10.249	2.001
Parma	2.748	176	6.421	1.549
Reggio-Emilia	981	48	4.459	1.101
Modena	7.768	667	9.745	1.862
Bologna	18.074	3.089	18.814	3.767
Ferrara	19.479	3.415	19.680	3.917
Ravenna	8.568	814	10.337	1.872
Forli'-Cesena	3.767	235	5.463	1.121
Rimini	1.936	414	2.118	547
Totale Regione	72.859	9.913	87.286	17.737

A titolo di verifica dell'attendibilità della stima effettuata, è stato svolto un confronto con i quantitativi di fertilizzanti di sintesi commercializzati annualmente in ambito regionale (Tabella 3.10); i dati disponibili sono relativi al periodo 2006-2011 e si riferiscono ad indagini svolte dall'ISTAT.

Tabella 3.10 Confronto tra i quantitativi di fertilizzanti chimici commercializzati in Emilia-Romagna (2006-2011) e gli apporti stimati ai suoli agricoli

Provincia		Azoto		Fosforo						
	Venduto Stimato		Differenza	Venduto	Stimato	Differenza				
	(t/anno)	(t/anno)	%	(t/anno)	(t/anno)	%				
Totale Regione	(*) 85.770	87.286	1,8	17.774	17.737	-0,2				
(*)		Gli anni 2009-2010 e 2011 presentavano valutazioni ISTAT del venduto di Azoto anomale, in quanto più passe di oltre 1/3 rispetto ai 3 anni precedenti								

3.1.3 Apporti al suolo da pratiche agro-zootecniche

Una volta definiti i contributi in cui possono essere distinti gli apporti ai suoli agricoli a seguito delle usuali pratiche agronomiche, si perviene al totale complessivo sommando i singoli contributi.

Nella **Tabella 3.11** sono riportati l'ammontare complessivo regionale e la relativa disaggregazione a livello provinciale, dell'azoto utilizzato per la concimazione delle colture.

Per quanto riguarda il contributo zootecnico si forniscono anche i valori parziali dovuti alle due principali tipologie di fertilizzante organico: una con caratteristiche palabili (letame e pollina), l'altra che si presenta in forma di liquame. Nella prima tipologia sono ricompresi i contributi dei bovini e degli avicoli, mentre con il termine liquame si è inteso l'apporto del settore suinicolo.

Tabella 3.11 Azoto sul suolo da attività di concimazione per tipo di origine

Provincia	Bovini e Avicoli	Suini	Totale zootecnico	Chimico	Fanghi	Totale concimazione
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)
Piacenza	4633	875	5507	10071	181	15759
Parma	9452	980	10433	6310	152	16894
Reggio-Emilia	8893	3159	12052	4382	276	16710
Modena	5900	2734	8633	9576	168	18377
Bologna	2927	644	3572	18487	204	22263
Ferrara	4172	356	4528	19338	101	23967
Ravenna	3486	428	3914	10158	609	14680
Forli'-Cesena	3075	1359	4434	5368	15	9816
Rimini	555	108	662	2082	15	2759
Totale Regione	43.092	10.643	53.735	85.770	1.721	141.227

Analoghe considerazioni sono state condotte per il fosforo, così come evidenziato nella Tabella 3.12.

Tabella 3.12 Fosforo sul suolo da attività di concimazione per tipo di origine

Provincia	Bovini e Avicoli	Suini	Totale zootecnico	Chimico	Fanghi	Totale concimazione
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)
Piacenza	1900	411	2311	2005	57	4373
Parma	3600	461	4062	1553	62	5677
Reggio-Emilia	3455	1480	4936	1103	183	6222
Modena	2412	1294	3706	1866	89	5661
Bologna	1342	302	1645	3775	65	5484
Ferrara	3535	166	3701	3925	39	7665
Ravenna	1925	200	2125	1876	191	4191
Forli'-Cesena	1677	646	2323	1124	5	3452
Rimini	278	51	329	548	9	887
Totale Regione	20.126	5.012	25.138	17.774	701	43.613

Nella Tabella 3.13 sono riportati i valori di pressione per unità di superficie conseguenti all'utilizzo delle diverse forme di fertilizzanti considerati; per i fertilizzanti chimici di sintesi la superficie di riferimento risulta essere la SAU complessiva, mentre per gli apporti zootecnici e fanghi da depurazione civile o da industrie agro-alimentari si sono considerate le superfici utilizzabili a tale scopo.

Tabella 3.13 Carichi unitari medi di azoto e fosforo a seguito delle pratiche di concimazione

Provincia		Chimico			Zootecnico			Fanghi	
	SAU disponibile	Carico N	Carico P	SAU utilizzata	Carico N	Carico P	SAU utilizzata	Carico N	Carico P
	(ha)	(kg/y/ha)	(kg/y/ha)	(ha)	(kg/y/ha)	(kg/y/ha)	(ha)	(kg/y/ha)	(kg/y/ha)
Piacenza	117.460	86	17	39.771	138	58	715	252	80
Parma	125.703	50	12	58.653	178	69	1.372	111	46
Reggio-Emilia	101.849	43	11	53.273	226	93	1.681	164	109
Modena	127.496	75	15	54.058	160	69	912	184	98
Bologna	173.224	107	22	23.963	149	69	1.615	126	40
Ferrara	176.876	109	22	40.543	112	91	716	142	54
Ravenna	116.647	87	16	27.154	144	78	3.705	164	52
Forli'-Cesena	89.358	60	13	28.964	153	80	80	184	63
Rimini	35.601	58	15	6.711	99	49	122	123	76
Totale Regione	1.064.214	81	17	333.091	161	75	10.917	158	64

Per un adeguato bilancio complessivo dei carichi dalle diverse fonti si è reso opportuno procedere a una stima degli apporti che tenga conto di un utilizzo volto al massimo sfruttamento delle superfici disponibili allo spandimento dei liquami zootecnici.

Per questa valutazione si è ipotizzato che i liquami vengano utilizzati nei terreni fino a raggiungere i 340 kg/ha di azoto in area non vulnerabile e i 170 kg/ha di azoto in area vulnerabile, valori massimi consentiti dall'attuale normativa, con conseguente aumento dei fertilizzanti chimici. Questa ipotesi considera che i liquami, di norma, vengano prevalentemente utilizzati in un raggio limitato rispetto all'ubicazione degli allevamenti, al fine di contenere i costi dovuti al trasporto.

Si è così calcolata la superficie minima sulla quale effettuare lo spandimento ottenendo, a livello regionale, 210.741 ettari in luogo dei 333.091 ettari precedentemente considerati (Tabella 3.14).

Tabella 3.14 Estensione della SAU utilizzata per lo spandimento effettivo dei reflui zootecnici a livello regionale e provinciale

Provincia	SAU (ha)	SAU per reflui zoo. max (ha)	SAU zoo per modello e valutazione surplus (ha)	Variaz.
Piacenza	117.460	39.771	24.135	-39
Parma	125.703	58.653	44.919	-23
Reggio Emilia	101.849	53.273	43.686	-18
Modena	127.496	54.058	30.677	-43
Bologna	173.224	23.963	11.386	-52
Ferrara	176.876	40.543	26.636	-34
Ravenna	116.647	27.154	11.969	-56
Forli'-Cesena	89.358	28.964	15.280	-47
Rimini	35.601	6.711	2.052	-69
Totale Regione	1.064.214	333.091	210.741	-37

A seguito della riduzione delle aree di spandimento, si valuta un incremento dell'apporto di azoto di tipo chimico, al fine di soddisfare le richieste delle colture. Si passa così da una stima di circa 85.800 t/anno di azoto a 103.600 t/anno, sull'intero territorio regionale, con un incremento del 20% (Tabella 3.15). La stima ottenuta è in linea con il quantitativo di azoto chimico contenuto nei fertilizzanti venduti in Emilia-Romagna nel 2012 e 2013 (media 106.000 t/anno di azoto - dato ISTAT). La variazione tra i carichi stimati sul suolo e da modello risulta pari al 13%.

Tabella 3.15 Carichi di azoto nelle due ipotesi di studio

Provincia		Carichi stir	nati su suolo		Modello	e surplus	Variaz
	Zootecnico	Chimico	Fanghi	Totale (A) concimazione	Chimico modello	Totale (B) concimazione	(B/A)
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(%)
Piacenza	5.507	10.071	181	15.759	12.475	18.163	15
Parma	10.433	6.310	152	16.894	8.134	18.718	11
Reggio Emilia	12.052	4.382	276	16.710	5.570	17.899	7
Modena	8.633	9.576	168	18.377	12.386	21.187	15
Bologna	3.572	18.487	204	22.263	21.189	24.965	12
Ferrara	4.528	19.338	101	23.967	21.766	26.396	10
Ravenna	3.914	10.158	609	14.680	12.471	16.994	16
Forli'-Cesena	4.434	5.368	15	9.816	7.050	11.499	17
Rimini	662	2.082	15	2759	2.540	3.217	17
Totale Regione	53.735	85.770	1.721	141.227	103.582	159.038	13

Analogamente si è proceduto alla stima per il fosforo (Tabella 3.16), per il quale la variazione regionale risulta più contenuta (+9%).

Tabella 3.16 Carichi di fosforo nelle due ipotesi di studio

Provincia		Carichi stima	ati su suolo		Modello	e surplus	Variaz
	Zootecnico	Chimico	Fanghi	Totale (A) concimazione	Chimico modello	Totale (B) concimazione	(B/A)
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(%)
Piacenza	2.311	2.005	57	4.373	2.562	4.930	13
Parma	4.062	1.553	62	5.677	1.979	6.104	7
Reggio Emilia	4.936	1.103	183	6.222	1.384	6.503	4
Modena	3.706	1.866	89	5.661	2.511	6.306	11
Bologna	1.645	3.775	65	5.484	4.278	5.988	9
Ferrara	3.701	3.925	39	7.665	4.516	8.256	8
Ravenna	2.125	1.876	191	4.191	2.316	4.632	10
Forli'-Cesena	2.323	1.124	5	3.452	1.444	3.773	9
Rimini	329	548	9	887	670	1.009	14
Totale Regione	25.138	17.774	701	43.613	21.660	47.500	9

3.1.4 Surplus di nutrienti dal settore agro-zootecnico

Le differenze tra i quantitativi di azoto e fosforo effettivamente distribuiti al campo con le pratiche di concimazione (riportati in Tabella 3.15 e in Tabella 3.16) e quelli necessari per la crescita delle colture, definiti come "da apportare" (vedi Tabella 3.4), rappresentano il Surplus teorico di fertilizzante che risulta disponibile nel terreno, soggetto al dilavamento e/o all'infiltrazione nel sottosuolo.

La valutazione del Surplus fornisce un dato medio regionale di 34 kg/ha di azoto e 20 kg/ha di fosforo distribuiti in eccesso durante le pratiche agronomiche. Come si può notare nella Tabella 3.17, i valori di azoto così ottenuti sono in linea con la media italiana ed europea, mentre per il fosforo le valutazioni regionali si discostano da tali medie. Tale discrepanza per il fosforo, è in parte legata al rilevante contributo regionale degli apporti zootecnici; infatti osservando nel dettaglio la tabella, il rapporto tra P e N chimico è di circa 1 a 5, così come per le richieste colturali valutate, mentre per i carichi zootecnici tale rapporto è prossimo a 1 a 2, con un surplus dell'ordine delle 14.000 t/anno.

Tabella 3.17 Surplus di azoto e fosforo relativi ai suoli agrari

			Apporti			Asportaz	SAU	Surpl	us ER	Italia	UE
	Bovini e Avicoli	Suini	Chimico	Fanghi	Totale						
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(ha)	(t/y)	(kg/ha)	(kg/ha)	(kg/ha)
Azoto	43.092	10.643	103.582	1.721	159.038	122.480	1.064.214	36.558	34	33	49
Fosforo	20.126	5.012	21.660	701	47.500	26.316	1.064.214	21.184	20	-4	1

3.1.5 Carichi provenienti dal diffuso civile

Relativamente al <u>settore civile</u> per gli insediamenti privi di rete fognaria viene stimato un carico inquinante nominale in funzione del numero di AE non serviti, utilizzando opportuni coefficienti di generazione indicati nella Tabella 2.10.

Gli scarichi domestici provenienti dalle case sparse, essendo impossibile definirne l'ubicazione, vengono distribuiti uniformemente nell'area comunale di riferimento; vista la particolare conformazione della rete minuta che solitamente riceve i suddetti scarichi si è ipotizzato che gli stessi recapitino direttamente sul suolo.

In case sparse e nuclei isolati, privi di pubblica fognatura, abitano circa 508.000 residenti.

Considerando che prima dello scarico nella rete minuta, di norma, devono essere presenti sistemi adeguati di trattamento, si è ipotizzato che venga effettuato un abbattimento paragonabile a quello prodotto da un sistema di trattamento di tipo primario (ad es. fossa Imhoff); quindi i carichi potenziali sono stati ridotti del 15% per l'azoto e del 10% nel caso del fosforo. Si ottiene dunque che circa l'11% dei residenti del territorio regionale, presente in nuclei isolati e case sparse, sversano un carico di azoto pari a circa 1.700 t/y e 270 t/y di fosforo (Tabella 3.18).

Tabella 3.18 Residenti in località e case sparse, non serviti da fognatura

Provincia	Residenti	Serviti	Res. non serviti	% res non serviti	Res. non serviti in case sparse	Res. non serviti in nuclei isolati	% in case sparse	% in nuclei isolati	Carichi N sve res non serviti	Carichi P sve res non serviti
	(n°)	(n °)	(n °)	(%)	(n°)	(n °)	(%)	(%)	(t/y)	(t/y)
Piacenza	290.966	262.504	28.462	10	19.983	8.479	70	30	97	15
Parma	447.251	387.164	60.087	13	37.173	22.914	62	38	205	32
Reggio-Emilia	535.869	471.048	64.821	12	43.204	21.617	67	33	221	34
Modena	706.417	632.771	73.646	10	63.216	10.430	86	14	251	39
Bologna	1.003.915	906.732	97.183	10	77.819	19.364	80	20	332	51
Ferrara	358.116	318.215	39.901	11	33.202	6.699	83	17	136	21
Ravenna	395.077	339.889	55.188	14	46.764	8.424	85	15	188	29
Forlì Cesena	398.162	343.903	54.259	14	42.235	12.024	78	22	185	29
Rimini	335.331	300.469	34.862	10	31.401	3.461	90	10	119	18
Totale	4.471.104	3.962.695	508.409	11	394.997	113.412	78	22	1.735	267

3.1.6 Contributi di origine naturale

Al suolo arrivano anche contributi di origine naturale; questi sono riconducibili ad apporti esterni veri e propri quali quelli conseguenti alle *ricadute atmosferiche* e a quanto può provenire dalla mineralizzazione nei cosiddetti *suoli incolti*, porzioni di territorio nei quali si è stimata la quota parte di azoto e fosforo potenzialmente asportabile dalle piogge.

I coefficienti dei carichi annui di azoto e fosforo, per unità di superficie, dovuti alle ricadute atmosferiche e ai suoli incolti sono riportati in Tabella 3.19.

Tabella 3.19 Carichi annui di azoto e fosforo, per unità di superficie, dovuti alle ricadute atmosferiche e ai suoli incolti

	Azoto (kg/ha/y)	Fosforo (kg/ha/y)
Suoli incolti	10	3
Deposizioni atmosferiche	10	1

Per il contributo dei suoli incolti l'applicazione dei coefficienti indicati in Tabella 3.19 alle superfici comunali, ridotte di quelle utilizzate in agricoltura e di quelle urbane, porta ad una quantificazione complessiva di 10 milioni di kg di azoto apportato al suolo e di 3 milioni di kg di fosforo (Tabella 3.20).

Relativamente agli *apporti atmosferici* utilizzando i coefficienti di Tabella 3.19 sui carichi unitari dati dalle piogge e le superfici provinciali, si ottengono gli apporti diffusi di Tabella 3.20.

Tabella 3.20 Azoto e fosforo da mineralizzazione su suoli incolti e da apporti atmosferici

	Incolto	Incolto	Atmosf.	Atmosf.
Provincia	Azoto	Fosforo	Azoto	Fosforo
	(t/y)	(t/y)	(t/y)	(t/y)
Piacenza	1.279	384	2.452	245
Parma	1.986	596	3.241	324
Reggio-Emilia	1.048	31	2.063	206
Modena	1.179	354	2.445	245
Bologna	1.648	495	3.368	337
Ferrara	702	211	2.461	246
Ravenna	530	159	1.694	169
Forli'-Cesena	1.334	400	2.227	223
Rimini	399	120	755	76
Totale Regione	10.106	3.032	20.707	2.071

3.1.7 Apporti complessivi dal settore agro-zootecnico e dai suoli

In base a quanto fin qui riportato, nelle due tabelle seguenti viene restituito il quadro di sintesi relativo ai carichi di azoto e fosforo apportati al suolo provenienti dalle fonti di tipo diffuso (settore agrozootecnico e civile case sparse). Il carico di origine civile contribuisce per circa il 10% dell'azoto totale apportato ai suoli mentre pesa solo per il 5% per il fosforo.

Tabella 3.21 Azoto complessivo sul suolo da concimazione e altre fonti diffuse

Provincia	Zootecnia	Chimico	Fanghi	Atmosferico	Incolto	Totale	Civile diffuso	Totale
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)
Piacenza	5.507	10.071	181	2.452	1.279	19.490	97	19.587
Parma	10.433	6.310	152	3.241	1.986	22.122	205	22.327
Reggio-Emilia	12.052	4.382	276	2.063	1.048	19.821	221	20.042
Modena	8.633	9.576	168	2.445	1.179	22.001	251	22.252
Bologna	3.572	18.487	204	3.368	1.648	27.279	332	27.611
Ferrara	4.528	19.338	101	2.461	702	27.130	136	27.266
Ravenna	3.914	10.158	609	1.694	530	16.905	188	17.093
Forli'-Cesena	4.434	5.368	15	2.227	1.334	13.378	185	13.563
Rimini	662	2.082	15	755	399	3.913	119	4.032
Totale Regione	53.735	85.770	1.721	20.707	10.106	172.039	1.735	173.774

Tabella 3.22 Fosforo complessivo sul suolo da concimazione e altre fonti diffuse

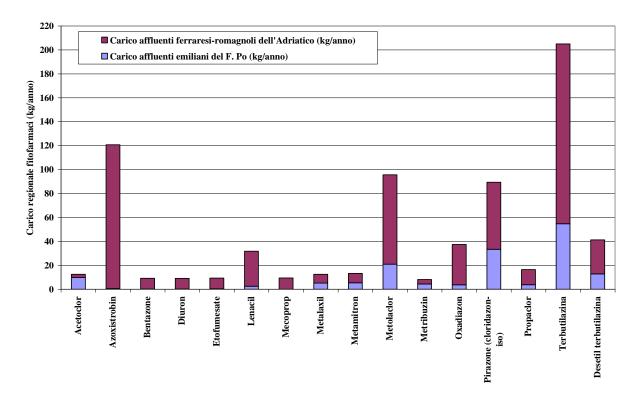
Provincia	Zootecnia	Chimico	Fanghi	Atmosferico	Incolto	Totale	Civile diffuso	Totale
	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)	(t/y)
Piacenza	2.311	2.005	57	245	384	5.002	15	5.017
Parma	4.062	1.553	62	324	596	6.597	32	6.629
Reggio-Emilia	4.936	1.103	183	206	314	6.742	34	6.776
Modena	3.706	1.866	89	245	354	6.260	39	6.299
Bologna	1.645	3.775	65	337	495	6.317	51	6.368
Ferrara	3.701	3.925	39	246	211	8.122	21	8.143
Ravenna	2.125	1.876	191	169	159	4.520	29	4.549
Forli'-Cesena	2.323	1.124	5	223	400	4.075	29	4.104
Rimini	329	548	9	76	120	1.082	18	1.100
Totale Regione	25.138	17.774	701	2.071	3.032	48.716	267	48.983

3.2 FITOFARMACI APPORTATI AI SUOLI

La base informativa per la valutazione dei <u>fitofarmaci apportati ai suoli</u> attraverso le pratiche agronomiche è rappresentata dal 6° Censimento ISTAT dell'Agricoltura, con riferimento ai dati comunali 2010 relativi alle superfici delle diverse tipologie colturali.

Partendo dalle risultanze analitiche dei monitoraggi sui corsi d'acqua e sugli acquiferi nel periodo 2009-2011, si sono individuate le sostanze attive più persistenti in acqua e le colture sulle quali sono maggiormente impiegate.

Per tali principi attivi, si sono valutati gli impieghi per comune, in kg/anno, dei singoli principi attivi, partendo dall'estensione provinciale delle colture trattate e verificando le risultanze ottenute con i dati di vendita.


3.2.1 Fitofarmaci riscontrati nelle aste fluviali regionali

La valutazione dei carichi di fitofarmaci nelle stazioni della Rete regionale di qualità delle acque superficiali interne poste in chiusura dei bacini affluenti in Po e in Adriatico, in relazione ai campionamenti 2009-2011, ha fornito le risultanze sintetizzate in Figura 3.1.

Effettuando il rapporto tra i carichi in uscita verso Po e Adriatico e le stime dei quantitativi venduti a livello regionale (rese disponibili dal Gruppo AAAF), si evidenzia che i ritrovamenti percentualmente più rilevanti si hanno per l'Azoxistrobin (1.6%), seguito dal Lenacil (1.0%); per l'insieme dei principi attivi rintracciati, i ritrovamenti complessivi, a livello regionale, sono dell'ordine dello 0.25% dei quantitativi impiegati.

I 4 fitofarmaci maggiormente presenti nelle aste fluviali sono: Terbutilazina, Azoxistrobin, Metolaclor e Pirazone.

Figura 3.1 Carichi regionali medi annui dei principali fitofarmaci sversati in Po e direttamente in Adriatico dalle aste monitorate (stima al 2009-2011)

3.2.2 Estensione 2010 delle colture interessate dall'uso di fitofarmaci

Per una zonizzazione geografica dei quantitativi di fitofarmaci impiegati in agricoltura, tra quelli maggiormente ritrovati nei corsi d'acqua, è necessario partire dall'estensione delle superfici comunali interessate dalle diverse colture, per le quali si utilizzano i diversi prodotti fitosanitari, impiegando i dati ISTAT relativi all'annata agraria 2010.

3.2.3 Stima dell'apporto alle colture dei fitofarmaci maggiormente riscontrati nei corsi d'acqua

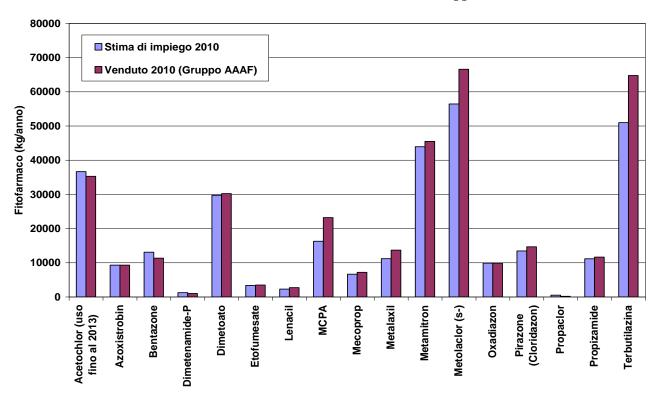
Il Servizio Fitosanitario della Regione attraverso una analisi condotta a livello provinciale è pervenuto ad una valutazione, per la maggior parte dei principi attivi di interesse, delle colture sulle quali essi sono impiegati, sia in termini di percentuale di superficie interessata per singola coltura che di quantitativi di principio attivo utilizzato per ettaro e per anno. Tali elementi sono raccolti in Tabella 3.23.

Tabella 3.23 Percentuali di estensione colturale dove sono impiegati i diversi prodotti fitosanitari considerati e quantità unitarie apportate annualmente

Principio attivo	Ritrovamenti sulle aste fluviali	Coltura	Quantità kg/ha/anno di sostanza attiva	PC (%)	PR (%)	RE (%)	MO (%)	BO (%)	FE (%)	RA (%)	FC e RN (%)
Acetochlor (uso fino al 23/6/2013)	Diffusi	mais	1.84	20	20	30	10	30	30	30	10
Azoxistrobin	MO, FE, BO,	cipolla	0.18		5			100			
	Romagna	fragola	0.18								70
		grano	0.18	25	10	10	15	30	70	30	40
		melone	0.36						50		
		pomodoro	0.36	30	25		5	50	70		
Bentazone	FE, BO, RA	mais	1.31				1				
		soia	0.90	50	100			30	67	60	
Dimetenamide-p	MO, FE, BO	mais	0.50	10	5	5		10		_	10
Dimetoato	MO, FE, BO,	grano	0.32	10	20	5		50	50	85	10
	Romagna	olivo	1.32							80	100
Etofumesate	Diffusi	barbabietola	0.28	30	60	99	75	75	100	100	90
Lenacil	Diffusi	barbabietola	0.20	60	50	50	30	30	100	100	50
MCPA	FE, BO, RA	grano	0.91	10	10						15
		mais	0.13					10	60	5	
		melo	0.39					20	50	30	
		pero	0.39					20	70	30	
		riso	0.42						60		
		sorgo	0.13						90	40	
Mecoprop	FE, BO, RA	cereali	0.30			7.5				12	
		grano	0.30	7.5	10		-	15			5
Metalaxil (-m)	Diffusi	cipolla	0.19	20	50			65	60	65	
		lattuga	0.19				80	80			5
		patata	0.24	50	100	100	45	45	30		100
		pomodoro	0.24	100	100	100	80	60	70		50
		spinacio, pisello, radicc.	0.19		-	50	20		20	20	50
35.4	D:00 :	vite	0.19	100	5	50	30	100	100	30	50
Metamitron	Diffusi	barbabietola	2.10	100	100	99	95	100	100	100	80
Metolaclor (s-)	Diffusi	mais	0.58	60	50	60	45	45	60	100	5
0 11	D:00 :	pomodoro	0.87	50	20	5	~			10	<u> </u>
Oxadiazon	Diffusi	fruttiferi	0.51				5		20	10	5
		girasole	0.51 0.34	50	70	100	70	60	30 100	80	
		pomodoro riso	0.34	30	70	100	70	00	100	80	_
		vite	0.51						10		
Pirazone (Cloridazon)	Diffuso	barbabietola	0.98	60	80	80	45	45	20	80	70
1 II azolie (Civi iuazoli)	Diffuso	cipolla	0.60	00	80	00	43	70	20	80	70
Propaclor	Diffusi	sorgo	1.80			5		70	3		5
•	Diffusi	barbabietola	0.50	5	5	40		10	28	15	3
Propizamide	Dillusi	cicoria	1.26	3	3	40		10	20	60	
		medica	1.47		5				4	15	
		indivia	1.26		3				-	60	
		lattughe	1.26					5		60	90
		radicchio	1.26					3	84	60	70
Terbutilazina [+metabo.]	Diffusi	mais	0.36	100	100	100	100	100	70	100	100
(uso fino al 31/12/2012)		sorgo	0.50		100	80	100	100	100	100	100

Note le superfici comunali delle diverse colture (ha), le percentuali delle colture interessate dal singolo fitofarmaco (a livello provinciale) e l'impiego di ogni fitofarmaco per ettaro sulla singola coltura (kg/ha/anno), si perviene, per ogni principio attivo e per comune, alla stima del quantitativo impiegato.

Le stime regionali di impiego dei diversi principi attivi analizzati sono state confrontate con le stime 2010 del venduto. Queste ultime sono rintracciabili sul sito dell'APPA della Provincia Autonoma di Trento, dove è presente, per ogni regione italiana, una valutazione sintetica dei quantitativi dei diversi principi attivi venduti annualmente.

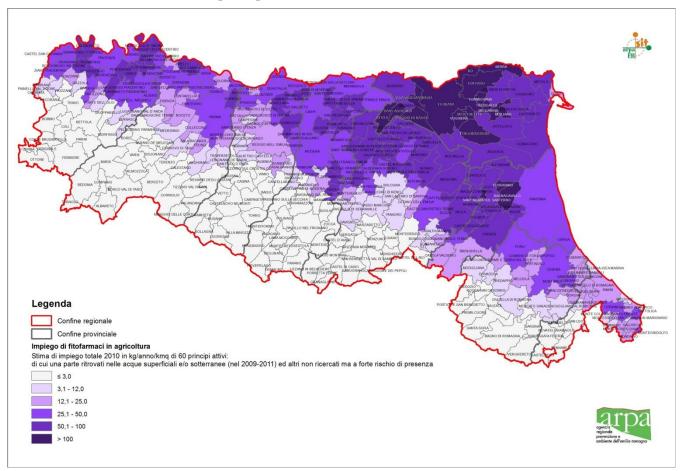

Per alcuni principi attivi poiché le differenze sono risultate sensibili, si sono considerati i dati provinciali del venduto, effettuando plausibili correzioni sulle percentuali delle superfici colturali interessate dall'uso delle diverse sostanze, avendo come obiettivo l'avvicinamento tra stime di utilizzo e stime di vendita.

Così facendo, la Figura 3.2 fornisce il confronto, per i principi attivi indagati, tra le stime di impiego effettuate al 2010, sulla base del procedimento descritto e la valutazione del venduto 2010.

Complessivamente la stima di impiego dei 17 principi attivi considerati è risultata di 316 t/anno, mentre il venduto 2010 risulta di 350 t/anno (+ 11 %).

Per far corrispondere esattamente le stime di impiego con i dati disponibili sul venduto regionale tutti i quantitativi comunali sono stati opportunamente riproporzionati.

Figura 3.2 Confronto per i diversi principi attivi tra le stime di impiego, riferite al 2010 e le valutazioni del venduto 2010 (t/anno) condotte dal Gruppo AAAF



A livello cartografico (Figura 3.3) sono rappresentate, per comune, le stime dell'impiego annuo complessivo di 60 principi attivi, in termini di "carichi" apportati per unità di superficie territoriale (kg/km²); si tratta dei 17 principi attivi esaminati in relazione ai maggiori ritrovamenti nelle acque superficiali, oltre a quelli aggiuntivi con almeno due ritrovamenti recenti entro gli acquiferi della pianura e venduti in quantità significativa, nonché alcuni principi attivi, fino ad ora non monitorati nelle acque sotterranee, ma ritenuti a forte rischio di presenza, in relazione ai quantitativi venduti o al grado di persistenza nei suoli e nelle acque.

A livello regionale 2010, in termini di colture, quasi il 90% dei principi attivi analizzati sono relativi: ai cereali (41%); ai fruttiferi, compresa la vite (36%); alla barbabietola da zucchero (12%). Segue un 5% per il pomodoro da industria.

Le aree regionali con i maggiori impieghi sono quelle della medio-bassa pianura. Le zone di più elevato uso sono: la parte centrale del ferrarese, gli areali del canale Destra Reno e Lamone in provincia di Ravenna; parzialmente la fascia circostante il Panaro; l'areale centrale della provincia di Piacenza.

Figura 3.3 Stima di impiego comunale in kg/anno/km² (di superficie territoriale) dell'insieme dei principi attivi analizzati

3.3 APPORTI DIFFUSI VALUTATI PER I METALLI

- Zinco da mangimi zootecnici

Lo zinco risulta una fonte aggiuntiva rispetto a quelle puntuali finora considerate, con apporti valutati significativi. Lo zinco è integrato nei mangimi ed in particolare in quelli suinicoli e bovini, favorendo la crescita dei capi. Il regolamento CE 1334/2003 ha fissato il limite massimo a 150 mg/kg di mangime, salvo l'uso di integratori specifici.

Partendo dal numero comunale di capi suini e bovini presenti si sono considerati in successione: il consumo medio unitario giornaliero di mangime, il quantitativo di zinco stimato per kg di mangime, il calcolo dello zinco annuo nei mangimi per comune e poi per sotto-bacino di ciascun corpo idrico, la percentuale di zinco utilizzato che si trova nelle deiezioni apportate ai suoli agricoli e la percentuale di allontanamento medio annuo verso le acque in funzione della tipologia di suolo.

La valutazione del quantitativo asportato fa riferimento ad una dettagliata indagine condotta in Olanda, riportata in letteratura, "Prediction of the long term accumulation and leaching of zinc in Dutch agricultural soils: a risk assessment study – W.de Vries et al., Alterra, Wageningen, 2400" (Paesi Bassi).

Si perviene così a stime di allontanamento di zinco dai suoli della regione prossime alle 30 t/anno.

- Metalli di provenienza dai fanghi di depurazione

Noti con sufficiente approssimazione gli apporti di metalli in kg/anno ai suoli agricoli connessi ai fanghi dei depuratori, a base comunale, si è passati ai quantitativi stimati per sotto-bacino di ciascun corpo idrico, sulla base dell'incidenza areale delle diverse SAU comunali nei singoli sotto-bacini.

La percentuale di metalli asportata dai suoli verso le acque è la stessa, per sotto-bacino, individuata a riguardo dello zinco connesso ai mangimi zootecnici.

La sintesi dei carichi apportati ai suoli e una stima di quelli che raggiungono le acque superficiali sono forniti in Tabella 3.24.

Tabella 3.24 Apporti di metalli ai suoli agrari con i fanghi di depurazione (anno 2012)

Ambito	Superficie Fanghi smaltimenti smaltiti (ha) (t_ss/anno		Cadmio (kg/anno)	Cromo totale (kg/anno)	Nichel (kg/anno)	Piombo (kg/anno)	Zinco (kg/anno)
			Apportati a	i suoli			
Totale regionale	8.832	37.751	29	2.190	1.462	1.015	12.766
			Apporti ai	sotto-bacin	i dei corpi i	drici	
Emilia	6.135	27.832	18	1.472	1.044	666	8.663
Bologna + Romagna	2.421	8.700	10	672	388	318	3.711
TOTALE	8.556	36.531	28	2.144	1.433	985	12.373
			Apporti stir	nati alle acqı	ie superficial	li	
Emilia			3	290	207	130	1.657
Bologna + Romagna			2	119	69	58	693
TOTALE			5	409	276	187	2.349

- Nichel naturale di provenienza dai suoli

La carta del "Fondo naturale del nichel della pianura emiliano-romagnola" del Servizio Geologico Sismico e dei Suoli della Regione Emilia-Romagna, reperibile sul web, evidenzia alcune zone della regione nelle quali il contenuto di nichel è di gran lunga più elevato, con concentrazioni superiori a 120-180 mg/kg di suolo.

Si è valutato che vi siano degli apporti massimi annui per la maggior parte dell'areale ferrarese, per alcuni ambiti del piacentino e della bassa reggiana, fino a $2.2~{\rm kg/km^2/anno}$, che equivalgono a circa $1~{\rm \mu g/anno/kg}$ di suolo, che è meno di $1/100.000~{\rm dell'effettivo}$ contenuto di nichel mentre per il resto del territorio regionale si è considerato un apporto uniforme pari a circa 1/10, cioè circa $0.1~{\rm \mu g/anno/kg}$ di suolo.

Con tali assunzioni l'apporto annuo naturale sulla regione risulta di 11.000 kg, circa la metà del carico stimato in uscita verso il Po e l'Adriatico.

4. IL TRASFERIMENTO DEI CARICHI DI NUTRIENTI DAL SUOLO VERSO LE FALDE E LA RETE MINUTA

La quantificazione dei flussi idrici e azotati di tipo diffuso, provenienti dall'attività agricola della pianura emiliano-romagnola, è stata effettuata con il modello matematico CRITERIA (Marletto et al., 2007), che comprende una serie di strumenti modellistici sviluppati nel corso degli ultimi 25 anni dal Servizio IdroMeteoClima di ARPA Emilia-Romagna. La modellistica utilizzata nel sistema CRITERIA, derivante da letteratura internazionale, è stata nel tempo sviluppata per il bilancio idrico e il bilancio azotato. CRITERIA caratterizza e quantifica i principali processi riguardanti l'acqua (infiltrazione, traspirazione, evaporazione, ruscellamento, risalita capillare) e i composti azotati (trasformazioni chimiche e chimico-biologiche e trasporto).

Nel presente lavoro è stato utilizzato CRITERIA-Geo, la versione geografica del modello unidimensionale, con il quale è possibile effettuare simulazioni con plurime combinazioni di dati pedologici, meteorologici e colturali. Sono queste tre categorie di dati gli input necessari al modello.

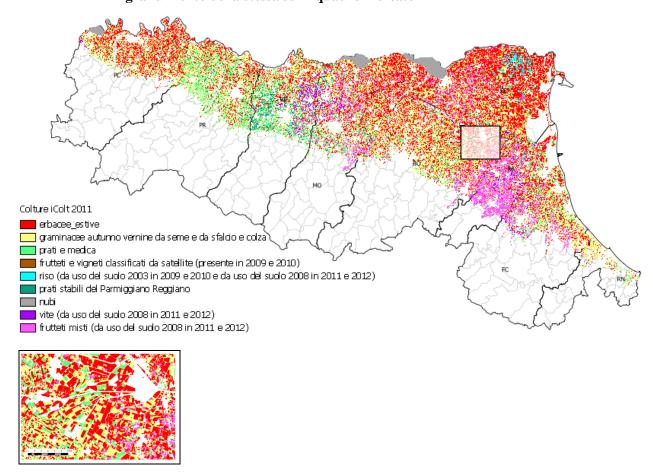
Lo studio ha riguardato solamente le aree di pianura della regione, a quota inferiore ai 200 m circa, per le quali sono disponibili la carta dei suoli alla scala 1:50.000 e le mappe colturali, e dove i moti verticali dei flussi idrici prevalgono rispetto ai moti orizzontali, condizioni che consentono l'impiego di modelli monodimensionali.

4.1 IL MODELLO CRITERIA

I moduli principali del modello CRITERIA sono quelli del bilancio idrico e del ciclo dell'azoto.

Il modello di bilancio idrico, alimentato con i dati giornalieri di precipitazione e temperatura, determina l'evapotraspirazione e calcola i flussi giornalieri di scorrimento superficiale, scorrimento ipodermico e drenaggio.

La struttura logica utilizzata per la simulazione del ciclo dell'azoto parte dal modello di simulazione LEACHM (Hutson e Wagenet, 1992), che costituisce un punto di riferimento internazionale per la modellazione matematica del ciclo dell'azoto nel sistema pianta-suolo-acqua.


I flussi di sostanza azotata in uscita dal sistema (assorbimento della pianta, lisciviazione) sono strettamente collegati ai flussi idrici. Nella fase di trasporto, l'azoto è veicolato dall'acqua in fase di traspirazione per quel che riguarda l'assorbimento della pianta, e in fase di percolazione o ruscellamento per quel che riguarda la lisciviazione.

Gli input per il modello CRITERIA si possono distinguere in dati pedologici, meteorologici e agronomici. Sono di seguito elencate le sorgenti informative utilizzate nel presente studio:

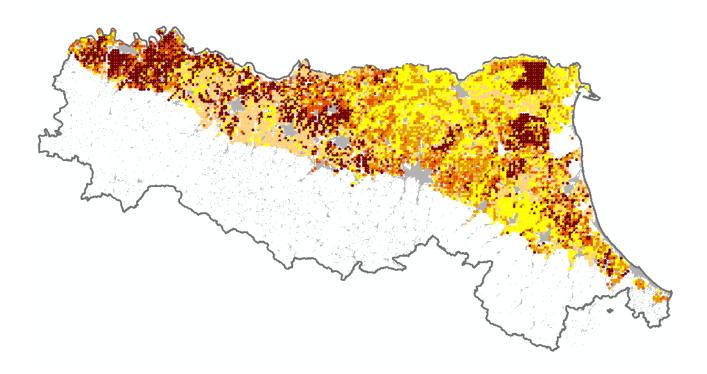
- mappe delle classi colturali per il territorio della pianura emiliano-romagnola (Figura 4.1);
- catalogo e mappe dei suoli (Servizio Geologico, Sismico e dei Suoli della Regione Emilia-Romagna);
- dati giornalieri di precipitazione e temperatura del periodo 2005 2012 su griglia regolare di 5 km di lato.

Per la stima dei bilanci idrici e dell'azoto è stato necessario impostare la sequenza delle coltivazioni (successioni colturali) ed il relativo carico di fertilizzanti. CRITERIA considera oltre allo sviluppo della coltura stessa, anche la tecnica agronomica adottata. L'epoca e il tipo di lavorazione modificano la rugosità del terreno e influiscono sulla dinamica dell'infiltrazione dell'acqua e del conseguente ruscellamento superficiale (runoff), così come l'epoca delle concimazioni condiziona la dinamica dei diversi quantitativi di azoto presenti nel terreno.

Figura 4.1 Mappa della distribuzione delle principali classi colturali (anno 2011) e in basso ingrandimento della stessa sul riquadro indicato

4.2 IMPOSTAZIONI E PARAMETRI DELLE SIMULAZIONI

La scelta dei parametri della simulazione e delle impostazioni di calcolo (scelta delle routine alternative, attivazione e disattivazione dei processi) è stata effettuata tenendo in considerazione l'ambito di applicazione della simulazione, la scala e la risoluzione spaziale. Alcuni parametri sono stati variati a seguito di uno studio di sensibilità e di calibrazioni preliminari.


Le uscite dalle celle chilometriche di CRITERIA in termini di acqua e azoto allontanati nell'anno medio verso la rete idrografica e le falde sono stati confrontati, sulla base delle più opportune aggregazioni, con i possibili apporti regionali richiesti per il bilancio dei carichi dalle diverse fonti, con riferimento sia ai flussi superficiali sia a quelli verso gli acquiferi del territorio di pianura, ai fini della taratura del modello.

I risultati delle simulazioni in termini di acqua, nitrato e ammonio riguardano:

- ruscellamento superficiale;
- ruscellamento ipodermico;
- drenaggio/lisciviazione profondo.

La Figura 4.2 fornisce, per le celle chilometriche di simulazione, i quantitativi medi annui complessivi di N allontanati verso il reticolo e le falde.

Figura 4.2 Azoto annuo mediamente allontanato nel periodo 2005-2012, per cella chilometrica di simulazione, verso il reticolo e le falde (ocra < 500 kg/anno; giallo < 1.500; marroncino chiaro < 2.500; marroncino < 3.500; marrone scuro > 3.500)

4.3 ELABORAZIONI SULLE RISULTANZE DEL MODELLO CRITERIA

Dal modello si ottengono i kg di Azoto che nell'anno medio possono raggiungere la rete idrografica, trasportati dall'acqua che se ne va per scorrimento superficiale e per deflusso ipodermico. I quantitativi di acqua e Azoto, che il modello individua come "dreno" dal suolo agrario possono in parte essere drenati dalla rete, in presenza di strati sottostanti poco permeabili e/o di un livello elevato della falda ipodermica, e in parte infiltrarsi verso gli acquiferi di conoide e freatici.

Per la valutazione della porzione del "dreno" fornito dal modello che viene raccolta dal reticolo superficiale si è fatto riferimento alla geologia degli strati sottostanti il suolo agrario ed in particolare alla loro permeabilità. La geologia considerata è quella della "Carta geologica di pianura dell'Emilia-Romagna" alla scala 1:250.000 – Edizione 1999, Servizio Geologico, Sismico e dei Suoli della Regione Emilia-Romagna.

Considerando le risultanze del modello CRITERIA e le ulteriori elaborazioni condotte sulla destinazione della componente idrica e azotata di "dreno" si perviene, a livello di ambito regionale di pianura, ai quantitativi di Tabella 4.1.

Tabella 4.1 Volumi idrici e carichi di Azoto vettoriati al reticolo idrografico e alle falde della pianura

	Acqua (Mm³/anno)	proveniente da				
	scorrimento superficiale e flusso ipodermico	dreno	dreno veicolato al reticolo	dreno veicolato alle falde	Totale al reticolo	TOTALE
Affluenti del F. Po	259	617	202	414	462	876
Affluenti dell'Adriatico	208	633	263	370	471	841
Totale	468	1249	465	784	933	1717
	Carico di Azoto (t/a	anno) provenien	te da:			
	scorrimento superficiale e flusso ipodermico	dreno	dreno veicolato al reticolo	dreno veicolato alle falde	Totale al reticolo	TOTALE
Affluenti del F. Po	1951	8770	2727	6042	4679	10721
Affluenti dell'Adriatico	1992	9392	4598	4794	6590	11384
Totale	3943	18161	7326	10836	11269	22104
	Carico di Azoto (t/a	anno) drenato v	erso:			
	conoidi montane e spiagge appenniniche	acquiferi di conoide e confinati superiori	freatico permeabile	freatico in golena del Po	freatico a bassa permeabilità	TOTALE alle falde
Drenato alle falde	268	2923	4127	78	3440	10836

4.4 IL DIFFUSO DI NUTRIENTI DAI SUOLI MONTANO-COLLINARI

Il modello CRITERIA elabora la sola componente azotata e fa riferimento all'ambito di pianura. Per il Fosforo e per l'Azoto diffuso dai suoli montano-collinari drenati al reticolo idrografico si è impiegata una schematizzazione semplificata.

La stima degli apporti diffusi di nutrienti alla rete principale (corpi idrici) è condotta usufruendo di procedure statistiche regressive che, partendo dai carichi resi disponibili ai suoli per ogni sotto-bacino afferente idrologicamente a ciascun corpo idrico, utilizzano in modo opportuno diversi parametri. I parametri considerati nella schematizzazione e i loro valori medi a livello regionale sono forniti in Tabella 4.2.

Tabella 4.2 Parametri considerati nelle regressioni per N e P e relativi valori medi pesati

		Superf	Boscato e				Superf.	Incidenza
Parametri considerati	Pioggia	imperm	semi-	SAU/ S s	Seminativi	Pendenza	erosività	apporti N
Tarametri considerati	(mm/anno)	/S sbac.	nat/S s	bac.	/S sbac.	(%)	alta/S s	e P
		/S svac.	bac.				bac.	zootec.
Media sulla regione	918	0.30	0.28	0.46	0.35	6.3	0.28	0.29

La taratura dei pesi dei parametri della schematizzazione regressiva è avvenuta valutando i risultati ottenuti in termini di carichi, sommati a quelli delle altre fonti e confrontati con i transiti stimati in corrispondenza delle stazioni di monitoraggio della qualità delle acque.

La Tabella 4.3 fornisce una serie di dati sui carichi di N e P di origine diffusa apportati al reticolo a livello regionale.

Tabella 4.3 Carichi di Azoto e Fosforo connessi ai sotto-bacini dei corpi idrici della regione

		N totale	P totale
Massima disponibilità ai suoli regionali	(t/anno)	223.359 (*)	55.207
Carico TOTALE al reticolo	(t/anno)	17.964	1.174
Frazione delle disponibilità annue apportate al reticolo	(%)	8.0	2.1
Carico sulla PIANURA con modello Criteria	(t/anno)	11.098 (**)	
Carico sulla PIANURA con metodo regressivo	(t/anno)		860
Carico MONTANO-COLLINARE con metodo regressivo	(t/anno)	6.866	314
Frazione dei carichi montano-collinari apportati al reticolo	(%)	9.8	2.1 (***)

^(*) Chimico + zootecnico + fanghi + incolto + atmosferico + metà del mineralizzato.

^(**) Rispetto al dato della Tabella 4.1 mancano gli apporti al reticolo minore (non corpi idrici) che sversa direttamente in Po o in Adriatico.

^(***) Sulla porzione montano-collinare il grado di allontanamento del P legato allo scorrimento è maggiore, ma risulta minore, mediamente, il suo apporto chimico-zootecnico per unità di superficie.

5. I CARICHI NEI CORPI IDRICI SUPERFICIALI

Relativamente agli apporti al reticolo idrografico principale, alle acque di transizione e al mare sono considerati, i nutrienti, i metalli e i fitofarmaci.

5.1 IL TRASFERIMENTO DEI CARICHI DIFFUSI ALLA RETE IDROGRAFICA PRINCIPALE (CORPI IDRICI)

Una volta stimati i *carichi diffusi di nutrienti* apportati mediamente per cella nei periodi "estivo" e "invernale" alla rete idrografica minuta di pianura per il trasferimento alla rete principale (corpi idrici), si sono utilizzati due coefficienti di abbattimento. Il primo è valutato in funzione dell'estensione dell'area contribuente, il secondo rispetto alle caratteristiche del comprensorio di appartenenza, a seconda che si tratti di acque "alte" o "basse", cioè che l'allontanamento delle acque avvenga prevalentemente per gravità o per pompaggio. Nel secondo caso il flusso idrico è più lento, i tempi di trasferimento maggiori e quindi sono più elevate le possibilità di riduzione dei carichi di nutrienti. Lo stesso dicasi all'aumentare dell'estensione del sotto-bacino drenato. L'abbattimento aggiuntivo nel caso di acque "basse" è valutato mediamente del 5%.

5.2 IL TRASFERIMENTO DEI CARICHI PUNTUALI ALLA RETE IDROGRAFICA PRINCIPALE (CORPI IDRICI)

Tutti i *carichi puntuali civili e industriali* (connessi ai nutrienti e alle principali sostanze pericolose quali metalli, che scaricano nella rete minuta, devono essere "trasferiti" ai corpi idrici di recapito, considerando opportuni coefficienti di abbattimento, che tengono conto dei processi di decadimento/adsorbimento/sedimentazione.

Per il contributo dei *depuratori civili* (oltre i 200 A.E.) *e industriali* e il trasferimento dei relativi carichi alla rete principale si vedano i Par. 5.2.1 e successivo.

Per l'apporto degli *scaricatori di piena*, l'abbattimento durante il trasferimento ai corpi idrici si è assunto direttamente proporzionale alla superficie del sotto-bacino sotteso dal corpo idrico. Mediamente la riduzione ottenuta è del solo 3%; l'abbattimento si è valutato normalmente contenuto in quanto il flusso si realizza per tempi limitati, durante e dopo gli eventi di pioggia, con apporti solitamente consistenti che "viaggiano" entro una rete che già trasporta le acque di pioggia provenienti dai terreni agricoli.

Per gli *abitati serviti da depuratori che trattano meno di 200 A.E.* i flussi sono solitamente esigui; nel complesso i contributi per corpo idrico sono sempre inferiori a 1÷3 l/s e suddivisi in molteplici apporti, distribuiti sul territorio. Questo significa che gli abbattimenti sulla rete secondaria sono rilevanti e si sono assunti tra il 20 e il 65% dello scaricato, in modo inversamente proporzionale al volume di scarico e direttamente proporzionale all'estensione del sotto-bacino imbrifero contribuente.

Anche per gli *abitati serviti da reti fognarie non depurate* i flussi sono normalmente esigui; la media per sotto-bacino è di circa 80 A.E.. Gli abbattimenti sulla rete secondaria si valutano quindi notevoli.

Infine, gli apporti di nutrienti delle *case sparse e degli abitati non serviti da fognature* sono considerati come contributi diffusi sul suolo e per essi si sono assunti coefficienti, per la valutazione del residuo in acqua, uguali a quelli ottenuti per i nutrienti agricoli sul suolo, dell'ordine quindi dell'8% per l'Azoto e del 2% per il Fosforo, ovviamente come valori medi, con variazioni anche notevoli sui singoli sotto-bacini.

5.2.1 L'apporto di carico dei depuratori civili ai corpi idrici

Per 405 depuratori con oltre 500 AE si sono valutate singolarmente le posizioni nelle quali lo scarico, quasi sempre attraverso la rete secondaria, raggiunge uno dei corpi idrici delle aste naturali o artificiali

stimando la lunghezza del percorso. Gli AE relativi a tale gruppo di depuratori assommano, a livello regionale, a circa 4.700.000.

Altri 203 depuratori tra 200 e 500 AE trattano 59.000 AE, quindi poco più dell'1% del carico complessivamente generato a livello regionale. Gli stessi sono attribuiti, mediante sovrapposizione cartografica digitale, ai corpi idrici sulla cui area drenata sono localizzati.

La distanza tra depuratore e corpo idrico è assunta pari alla distanza media ricavata, con la metodologia prima descritta, nel caso rispettivamente dei corpi idrici naturali e artificiali, considerando come campione i 191 depuratori con un numero di AE compreso tra 500 e 2.000.

I carichi dei depuratori sono stati abbattuti in relazione al percorso effettuato sulla rete secondaria, considerando una riduzione media per km assunta crescente al diminuire dei volumi scaricati (tra 1.5% e 4% per km). Ciò in quanto la diluizione, la dispersione, il rallentamento nella velocità di flusso saranno complessivamente maggiori.

Per i soli Azoto e Fosforo si sono condotte anche delle valutazioni "estive" (maggio-settembre).

5.2.2 L'apporto di carico degli scarichi industriali ai corpi idrici

Gli scarichi industriali considerati in acque superficiali sono 773, per un volume idrico complessivo apportato di circa 89 Mm³/anno.

Per i 192 scarichi con volume singolo di apporto non inferiore agli 80.000 m³/anno e/o con autorizzazione integrata ambientale (AIA), nota la localizzazione dello stabilimento, si è valutato il possibile percorso dello sversamento, fino all'arrivo in uno dei corpi idrici della rete idrografica. Il volume complessivo riguardante tali scarichi è di 66 Mm³/anno (74% del totale).

I restanti 581 scarichi sono stati attribuiti, mediante sovrapposizione cartografica digitale, ai corpi idrici sulla cui area drenata sono localizzati. I percorsi fino ai corpi idrici si sono assunti pari alle medie ottenute per gli scarichi principali, differenziati tra rete idrografica naturale e artificiale.

Come per i depuratori civili, i carichi industriali sono stati abbattuti assumendo una riduzione media per km percorso che cresce al diminuire dei volumi scaricati.

5.3 LA SCHEMATIZZAZIONE DEI FLUSSI INQUINANTI LUNGO LA RETE IDROGRAFICA PRINCIPALE

5.3.1 I parametri considerati

Si sono schematizzati i parametri ritenuti più conosciuti, in termini sia di fonte di generazione sia di relativa quantificazione, che vengono rilevati con una certa frequenza nelle stazioni di monitoraggio e quindi risultano sufficientemente attendibili in termini di concentrazioni e di carichi sulle aste e alle chiusure di bacino.

L'analisi ha pertanto riguardato:

- per il LIMeco i composti fosfatici e azotati;
- per i metalli: cadmio, cromo, nichel, piombo e zinco; non sono stati presi in considerazione il rame, in quanto valutato a limitata pericolosità, e il boro, essendo per la quasi totalità di provenienza naturale per effetto della sua lisciviazione dalle rocce appenniniche e dai suoli della pianura;
- per i fitofarmaci i seguenti principi attivi: Acetoclor, Azoxistrobin, Dimetenamid-P, Dimetoato,
 Etofumesate, Lenacil, MCPA (Acido 2,4 MetilCloroFenossiAcetico), Mecoprop, Metalaxil,
 Metamitron, Metolaclor, Oxadiazon, Pirazone (cloridazon-iso), Propizamide e Terbutilazina.

5.3.2 Caratteristiche della schematizzazione

La schematizzazione è stata condotta considerando, quali elementi di base, i corpi idrici naturali e artificiali delle aste idrografiche che interessano la regione.

Partendo dalla stima dei carichi effettuata per le diverse sostanze considerate, note le portate di ciascun corpo idrico, sono state stimate le concentrazioni medie di ogni sostanza e queste confrontate con le concentrazioni medie rilevate nelle stazioni di monitoraggio dei corpi idrici.

Le sostanze fosfatiche e azotate sono state indagate a livello medio stagionale, considerando la stagione "invernale" come quella che va da ottobre ad aprile, compresi, e quella "estiva" come quella composta dai restanti 5 mesi (da maggio a settembre). Per i metalli e i fitofarmaci la valutazione è stata condotta a livello medio annuale, in quanto non sono disponibili sufficienti elementi significativi, sia sulle fonti sia sui dati di monitoraggio, per analisi stagionali distinte.

La schematizzazione è stata condotta in ambiente Excel a livello di corpo idrico; per ogni corpo idrico sono stati definiti (a livello di codici), il corpo idrico a monte e gli eventuali corpi idrici affluenti laterali.

Per ogni corpo idrico e per ciascun parametro analizzato sono stati sommati:

- il carico originato nel sotto-bacino attinente il corpo idrico, considerando un abbattimento chilometrico in relazione alla metà del tratto;
- il carico che arriva da monte, considerando un abbattimento chilometrico sullo stesso in relazione all'intera lunghezza del tratto;
- il carico che arriva da eventuali affluenti, considerando un abbattimento chilometrico sullo stesso in relazione a metà della lunghezza del tratto.

In questo modo, procedendo verso valle per i successivi corpi idrici, sono stati sommati progressivamente i carichi e considerati gli abbattimenti, sia pure solitamente contenuti, in relazione ai processi di biodegradazione, adsorbimento e sedimentazione nella matrice acqua.

5.3.3 I deflussi idrici impiegati nella schematizzazione

Le portate sono state valutate per ogni chiusura di corpo idrico naturale o artificiale.

Le portate impiegate derivano, per quanto riguarda la rete naturale, da procedure di regionalizzazione basate su: superficie, pioggia media, quota media e massima del bacino a monte, effettuate nell'analisi relativa ai bilanci idrici. Ciò con riferimento al dato medio annuo, poi riproporzionato sui due periodi dell'anno "invernale" ed "estivo" considerati.

Relativamente alla rete artificiale per il calcolo dei deflussi "invernali" si è operato attraverso opportuni coefficienti udometrici, cioè il contributo medio nell'unità di tempo connesso ad un km² di superficie territoriale (l/s/km²). Il coefficiente udometrico è stato assunto variabile sul territorio drenato della pianura in relazione a: permeabilità del suolo, permeabilità del sottofondo, soggiacenza della falda ipodermica, superficie urbanizzata.

La valutazione è stata condotta facendo riferimento allo stato "invernale", cioè in presenza di deflussi derivanti esclusivamente dal dreno delle acque di pioggia.

Le portate "estive" naturali delle aste artificiali sono state assunte pari a 1/6 di quelle "invernali". Sui collettori principali sono state anche considerate plausibili portate connesse alla funzione irrigua, che determinano una diluizione dei carichi presenti.

Sulle 89 aste artificiali considerate il coefficiente udometrico medio "invernale" è risultato di circa 8 l/s/km², con variabilità tra 4 e 14 l/s/km².

Alle portate naturali sono state sommate quelle che derivano dagli scarichi significativi provenienti dal settore industriale, dai depuratori civili e dagli scaricatori di piena delle reti fognarie. Sono invece stati sottratti, anche in termini di carichi presenti in asta, i quantitativi:

- drenati verso le falde nella fascia di conoide (corpi idrici sovrastanti le ZVN);
- prelevati per scopi irrigui, acquedottistici e industriali, questi ultimi soltanto se la restituzione avviene su un'asta diversa (es. polo chimico di Ravenna);
- prelevati per uso idroelettrico, qualora l'asta di restituzione sia diversa da quella di prelievo (es. alto Reno).

5.4 LE FONTI DI GENERAZIONE

Le fonti di generazione considerate in relazione alle diverse sostanze schematizzate sono:

- a) NUTRIENTI da: depuratori civili, fognature non depurate, case sparse non collettate, scarichi industriali, scaricatori di piena, allevamenti ittici, diffuso sul suolo.
- b) METALLI da: depuratori civili, scarichi industriali, scaricatori di piena, diffuso connesso a fanghi di depurazione e zootecnia, apporto naturale dai suoli per il nichel. Altri metalli possono avere altri apporti naturali ma non sono stati considerati, in quanto ritenuti percentualmente contenuti rispetto al carico complessivo.
- c) FITOFARMACI da: trattamenti delle colture.

5.5 ABBATTIMENTO SUL SUOLO ED ENTRO IL RETICOLO IDROGRAFICO DEI PRINCIPALI FITOFARMACI RISCONTRATI NEI CORSI D'ACQUA

In riferimento ai singoli <u>fitofarmaci</u> apportati ai suoli e rintracciati in misura significativa nelle acque superficiali, partendo dai due elementi stimabili: apporti alle colture per comune e carichi in transito alle chiusure di bacino e di sotto-bacino montano/intermedio, è valutabile un coefficiente di abbattimento complessivo da suddividere tra:

- abbattimento sul suolo e nel trasferimento suolo reticolo idrografico principale (corpi idrici);
- abbattimento lungo le aste principali, durante il trasporto.

Per ogni principio attivo considerato si è passati dall'impiego comunale a quello totale sull'areale imbrifero a monte della chiusura del singolo corpo idrico.

Per ogni stazione di qualità nella quale sono rilevati i fitofarmaci si è operato il confronto tra le stime dei quantitativi impiegati a monte e le stime dei carichi rilevati sulle aste. Al riguardo la Tabella 5.1 fornisce il raffronto a livello regionale, considerando le stazioni in chiusura di bacino.

Tabella 5.1 Incidenza dei principali ritrovamenti rispetto alla stima del venduto 2009-2010

	Acetoclor	Azoxistrobin	Bentazone	Dimetenamid-p	Dimetoato	Etofumesate	Lenacil	MCPA	Mecoprop	Metalaxil	Metamitron	Metolaclor (-S)	Metribuzin	Oxadiazon	Pirazone (cloridazon-iso)	Propaclor	Propizamide	Terbutilazina (+metabolita)	Totale
Venduto 2009- 2010 (t/anno)	33.1	7.6	8.4	0.8	33.6	4.0	3.2	22.4	7.3	10.5	47.9	56.9	8.7	8.7	14.8	15.9	10.3	59.5	353.6
Ritrovamenti in chiusura aste (kg/anno)	13	121	9	7	6	9	32	5	9	12	13	96	8	37	89	16	9	246	737
Incidenza ritrovamenti (%)	0.04	1.59	0.11	0.9	0.02	0.23	0.98	0.02	0.13	0.12	0.03	0.17	0.09	0.43	0.60	0.10	0.09	0.41	0.21

Per la valutazione dei ritrovamenti medi il confronto è avvenuto ogni qualvolta entrambi i quantitativi sono risultati non nulli; una presenza nulla rilevata in acqua può non essere rappresentativa di un impiego nullo a monte, ma del fatto che le concentrazioni del principio attivo risultano inferiori al limite di quantificazione, sia per degradazione naturale sul suolo e in acqua, sia per diluizione dei quantitativi residui. Si sono così ottenute le percentuali medie di "residuo" di Tabella 5.2.

E' anche stata condotta la stima di un "residuo" teorico per i diversi principi attivi, ottenuto partendo dall'emi-vita (EV) nel suolo, tratta da banche dati e dalle schede relative alle sostanze pericolose e normalmente indicata come numero di giorni, corretta in relazione alla diversa propensione all'adsorbimento alle particelle solide (coefficiente Koc).

Le valutazioni reali condotte per il "residuo" sono risultate quasi sempre similari alla stima teorica, fatta eccezione per due principi attivi: Azoxistrobin e Dimetenamid-P; per questi si è assunta come "residuo" la media tra il valore rilevato e quello teorico.

Vista la sufficiente rispondenza tra dato teorico e valore mediano rilevato per l'abbattimento complessivo, si può ritenere accettabile il dato teorico ottenuto per la frazione di abbattimento durante il trasporto sulle aste principali, in termini di riduzione per giorno di permanenza.

Nella schematizzazione dei carichi e delle concentrazioni sui corpi idrici si è partiti dai coefficienti di Tabella 5.2, operando poi degli aggiustamenti in fase di taratura.

Tabella 5.2 Valutazioni relative agli abbattimenti dei principi attivi maggiormente ritrovati nelle acque superficiali

Principio attivo	Residuo misurato sul quantitativo impiegato (valore 50 percentile) nelle stazioni con ritrovamenti non nulli	Residuo teorico (*)	Media tra misurato e teorico	Degradazione giornaliera in acqua (**)
Acetoclor	0.0004	0.0008		0.013
Azoxistrobin	0.0015	0.0052	0.0025	0.013
Dimetenamid-P	0.0085	0.0016	0.0042	0.020
Dimetoato	0.0002	0.0007		0.011
Etofumesate	0.0041	0.0045		0.025
Lenacil	0.0092	0.0055		0.005
MCPA	0.0010	0.0018		0.020
Mecoprop	0.0019	0.0023		0.014
Metalaxil	0.0006	0.0008		0.010
Metamitron	0.0003	0.0005		0.050
Metolaclor	0.0018	0.0021		0.042
Oxadiazon	0.0018	0.0012		0.028
Pirazone (cloridazon-iso)	0.0059	0.0053		0.010
Propizamide	0.0010	0.0017		0.025
Terbutilazina (+desetil _)	0.0029	0.0032		0.083
Media	0.0028	0.0028		0.024

^(*) Valutato con l'espressione: $k \cdot E.V.s-c$ con k = 0.000033 e E.V.s-c l'emi-vita nel suolo corretta con il koc (**) Valutata con l'espressione: 0.5/E.V.w con E.V.w l'emi-vita in acqua

5.6 TARATURA DELLA SCHEMATIZZAZIONE DI NUTRIENTI, METALLI E FITOFARMACI

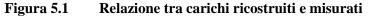
Relativamente al <u>transito dei nutrienti, dei metalli e dei fitofarmaci,</u> dopo avere valutato gli apporti di carico ai singoli corpi idrici della rete principale, gli stessi vengono "trasferiti" verso valle, fino alle chiusure di bacino.

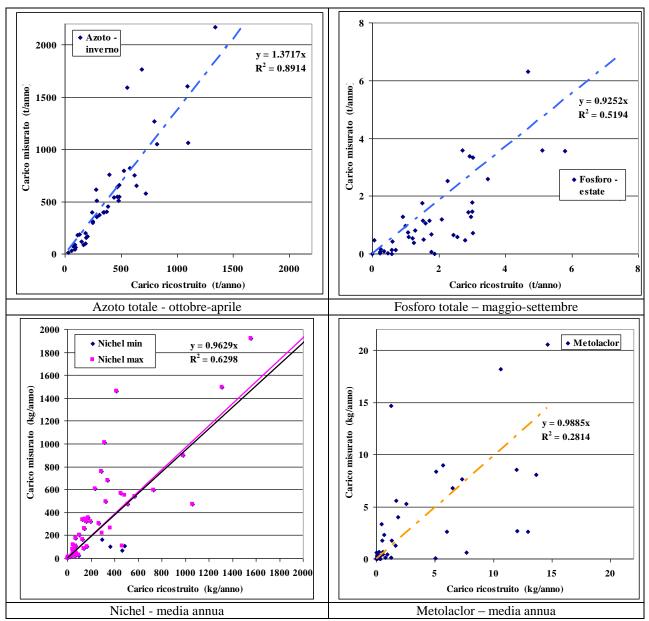
Per i nutrienti vi è una conoscenza pregressa dei possibili coefficienti chilometrici di abbattimento. Per i metalli e i fitofarmaci maggiormente presenti in alveo, si è partiti da coefficienti di abbattimento/sedimentazione sulla base di quanto rintracciabile in letteratura, adeguandoli poi in fase di taratura.

La taratura è stata condotta considerando principalmente le stazioni in chiusura di bacino:

- a) prima confrontando le concentrazioni derivanti dalla schematizzazione predisposta con le concentrazioni medie rilevate nelle stazioni di misura della Rete regionale di monitoraggio, per valutare incongruenze rilevanti;
- b) poi confrontando i carichi derivanti dalla schematizzazione predisposta con i carichi ottenuti sulle stazioni di misura della Rete relativamente al periodo 2009-2011.

La taratura regionale del singolo parametro è stata condotta confrontando in un grafico X - Y i valori ricostruiti e i valori medi rilevati.


Le problematiche riscontrate per i diversi gruppi di parametri schematizzati variano di molto e contribuiscono alla differente qualità del risultato.


I coefficienti generali di taratura riguardano principalmente:

- la frazione degli inquinanti diffusi sul suolo che raggiunge il reticolo (nutrienti e fitofarmaci);
- gli abbattimenti lungo il reticolo minore e sui corpi idrici schematizzati (tutti gli inquinanti considerati);
- alcuni coefficienti di apporto relativi principalmente ai metalli (dagli scaricatori, dalla zootecnia per lo zinco, da apporti naturali per il nichel).

5.7 LE RISULTANZE DELLA SCHEMATIZZAZIONE

I 4 grafici di Figura 5.1 mostrano un confronto tra carichi ricostruiti e misurati per azoto e fosforo a livello "stagionale", per Nichel e Metolaclor su base annuale.

Le risultanze della schematizzazione evidenziano problematiche connesse ai monitoraggi ed in particolare alla elevata percentuale di riscontri analitici inferiori ai limiti di quantificazione per tre dei cinque metalli e per i fitofarmaci che contribuiscono in maniera rilevante alla dispersione dei punti nei grafici.

A livello regionale la Tabella 5.3 fornisce, per i diversi parametri esaminati, un confronto tra i carichi ottenuti con la schematizzazione (immessi nei corpi idrici e immessi in Po e Adriatico) e quelli dedotti dalle misure, per le stazioni di monitoraggio poste più a valle sulle singole aste che apportano al F. Po e al mare.

Inoltre, si evidenzia una sotto-stima per l'azoto invernale per 1/3-1/4 del carico. I relativi apporti diffusi dai suoli agrari, che rappresentano circa il 75% del carico, si reputano non sotto-stimati, avendo però considerato l'uso di pratiche agricole corrette a fini ambientali (interrimento del letame, uso omogeneo di tutte le superfici utili per le liquamazioni, etc.).

Tabella 5.3 Confronto tra i carichi ricostruiti mediante la schematizzazione e i carichi stimati nelle stazioni di monitoraggio prossime alle chiusure di bacino

		Stime del car	:				
Parametro		immesso nella rete idrografica mediante schematizz.	ricostruito sulle stazioni di misura (concentraz. medie misurate x portate medie della schematizzazione)	ricostruito in chiusura delle aste con la schematizzazione	con metodo Annuario ARPA sulle stazioni (*)	con metodo ISPRA -1 sulle stazioni (*)	con metodo min 25% LOQ (*)
Azoto – inverno	(t/anno)	21.114	28.103	19.419	25.000		
Azoto – estate	(t/anno)	2.988	1.520	1.349	3.600		
Fosforo - inverno	(t/anno)	1.659	1.077	1.132	1.010		
Fosforo – estate	(t/anno)	322	80	86	140		
Azoto TOT	(t/anno)	24.103	29.623	20.769	28.677	30.065	
Fosforo TOT	(t/anno)	1.981	1.157	1.218	1.153	1.392	
Cadmio	(kg/anno)	264	447	206	30	7	633
Cromo	(kg/anno)	3.183	3.028	1.984	727	411	4.535
Nichel	(kg/anno)	20.116	18.610	15.421	17.696	15.852	16.755
Piombo	(kg/anno)	2.479	2.939	1.922	390	265	4.474
Zinco	(kg/anno)	110.821	104.564	86.128	106.130	191.877	202.484
Acetoclor	(kg/anno)	19	16	17	14	23	
Azoxistrobin	(kg/anno)	68	55	63	122	113	
Dimetenamid-P	(kg/anno)	8	7	7	7	7	
Dimetoato	(kg/anno)	12	16	11	6	8	
Etofumesate	(kg/anno)	16	16	14	10	9	
Lenacil	(kg/anno)	28	28	27	33	30	
MCPA (Acido 2,4 MetilCloroFenossiAcetico)	(kg/anno)	13	8	11	5	6	
Mecoprop	(kg/anno)	15	11	13	9	14	
Metalaxil	(kg/anno)	33	30	29	16	17	
Metamitron	(kg/anno)	16	11	12	13	14	
Metolaclor	(kg/anno)	177	177	148	108	170	
Oxadiazon	(kg/anno)	51	64	44	44	45	
Pirazone (cloridazon-iso)	(kg/anno)	115	115	107	97	105	
Propizamide	(kg/anno)	13	10	11	9	11	
Terbutilazina	(kg/anno)	428	388	311	277	328	
(*) Vedi Par. 5.8							

La Tabella 5.4 fornisce la stima, per i parametri considerati, degli apporti valutati ai corpi idrici, distinguendo la porzione con immissione in Po da quella diretta in Adriatico e l'incidenza dei diversi settori di generazione.

Tale percentuale si deve intendere grosso modo la stessa anche in chiusura di bacino, a meno dei diversi gradi di abbattimento, in relazione alla localizzazione degli apporti.

Tabella 5.4 Carichi di nutrienti, metalli e fitofarmaci (o loro incidenza %) apportati alla rete idrografica tipizzata (corpi idrici) dai diversi settori, per ambito idrografico

	N totale	N	N	N	N	N	N	N	N
	(t/anno)	Diffuso	Dep >	Dep <	Non dep.	Non serv.	Scaricat	Industria	Ittico
TOTALE	24,103	18,077	4,098	121	169	217	1,205	193	24
Emilia + FE	14,701	78%	14%	1%	1%	1%	5%	1%	0%
BO + Romagna	9,402	69%	22%	0%	1%	1%	6%	1%	0%

	P totale	P	P	P	P	P	P P		P
	(t/anno)	Diffuso	Dep >	Dep <	Non dep.	Non serv.	Scaricat	Industria	Ittico
TOTALE	1,981	1,070	416	20	26	6	396	38	2
Emilia + FE	1,264	57%	19%	1%	1%	0%	19%	2%	0%
BO + Romagna	715	50%	24%	1%	1%	0%	22%	2%	0%

	Cadmio	Cadmio	Cadmio	Cadmio	Cadmio	Cadmio
	(kg/anno)	Dep >	Scaricat	Industria	Fanghi	Diffuso
TOTALE	264	172	77	11	5	0
Emilia + FE	156	66%	26%	6%	2%	0%
BO + Romagna	108	64%	34%	0%	2%	0%

	Cromo	Cromo	Cromo	Cromo	Cromo	Cromo
	(kg/anno)	Dep >	Scaricat	Scaricat Industria Fan		Diffuso
TOTALE	3,183	1,560	764	446	414	0
Emilia + FE	1,760	39%	23%	22%	17%	0%
BO + Romagna	1,422	61%	26%	5%	8%	0%

	Nichel	Nichel	Nichel	Nichel	Nichel	Nichel
	(kg/anno)	Dep >	p > Scaricat Industr		Fanghi	Naturale
TOTALE	20,116	4,224	3,822	543	282	11,265
Emilia + FE	13,917	19%	14%	2%	1%	64%
BO + Romagna	6,199	25%	30%	5%	1%	40%

	Piombo	Piombo	Piombo	Piombo	Piombo	Piombo	
	(kg/anno)	Dep >	Scaricat	Industria	Fanghi	Diffuso	
TOTALE	2479	1,314	768	203	188	0	
Emilia + FE	1,245	46%	32%	11%	10%	0%	
BO + Romagna	1,235	60%	30%	5%	5%	0%	

	Zinco	Zinco	Zinco	Zinco	Zinco	Zinco
	(kg/anno)	Dep >	Scaricat	icat Industria Fanghi		Zoo-suoli
TOTALE	110,821	38,787	38,787	1,995	2,327	28,813
Emilia + FE	72,539	36%	28%	1%	2%	33%
BO + Romagna	38,283	34%	48%	3%	2%	14%

	Acetoclor	Azoxi_ strobin	Dimetena_ mid-P	Dimetoato	Etofumesate	Lenacil	МСРА	Mecoprop
(kg/anno)	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso
TOTALE	19	68	8	12	16	28	13	15
Emilia + FE	13	43	6	5	9	17	9	5
BO + Romagna	6	25	1	7	7	11	4	10

	Metalaxil	Metami_ tron	Metolaclor	Oxadiazon	Pirazone (cloridazon -iso)	Propiza_ mide	Terbutila_ zina	Fitof. tot.
(kg/anno)	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso	Diffuso	
TOTALE	33	16	177	51	115	13	428	100%
Emilia + FE	22	8	139	46	65	6	324	68%
BO + Romagna	11	7	39	5	49	7	104	32%

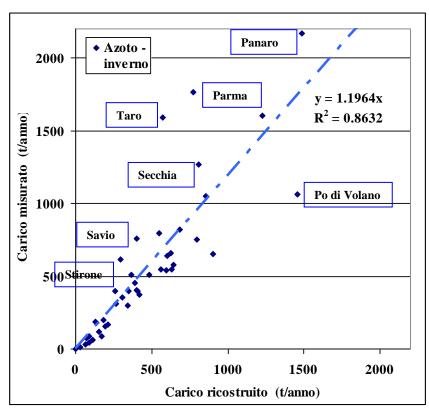
Relativamente alla percentuale di nichel di provenienza naturale, stimata in oltre il 50% del carico regionale, è da chiarire se tale apporto possa determinare il superamento dello standard di qualità ambientale (SQA) in qualche stazione monitorata; l'unica stazione dove si è registrato un superamento dell'SQA per il nichel, riguarda un'asta artificiale della pianura parmense, il cui areale drenato presenta però concentrazioni contenute di tale metallo nei suoli. Il problema quindi pare non sussistere, anche perché, considerando il massimo allontanamento individuato (2.2 kg/km²/anno) su un intero sotto-bacino, si otterrebbero concentrazioni medie in acqua che non supererebbero 1/3 dello SQA (20 μ g/l).

5.7.1 La sottostima nella ricostruzione dell'azoto

La ricostruzione evidenzia una rilevante sottostima del carico di azoto in ottobre-aprile, periodo che contribuisce al 90% circa del flusso in Po e Adriatico. Tenuto conto che i 3/4 del carico provengono dal diffuso sui suoli, è evidente che è questa la fonte che deve essere prioritariamente esaminata, anche in relazione all'incertezza sulla frazione dell'apportato al suolo che raggiunge il reticolo.

Per la pianura la valutazione dell'aliquota di carico che viene asportata dal terreno, per effetto delle piogge, è stata condotta, come già descritto, con il modello CRITERIA, per il periodo 2005-2012.

L'allontanamento dell'azoto per effetto di scorrimento superficiale, deflusso ipodermico e dreno è fortemente dipendente dai deflussi idrici. Negli anni dal 2005 in poi, utilizzati come riferimento dal modello CRITERIA, il 2006 e il 2007 sono stati molto siccitosi, mentre il 2009 e il 2010 sono risultati anni particolarmente "umidi". La media dei deflussi regionali 2008-2011, di 224 m³/s, è superiore del 20% alla media degli anni 2005-2011.

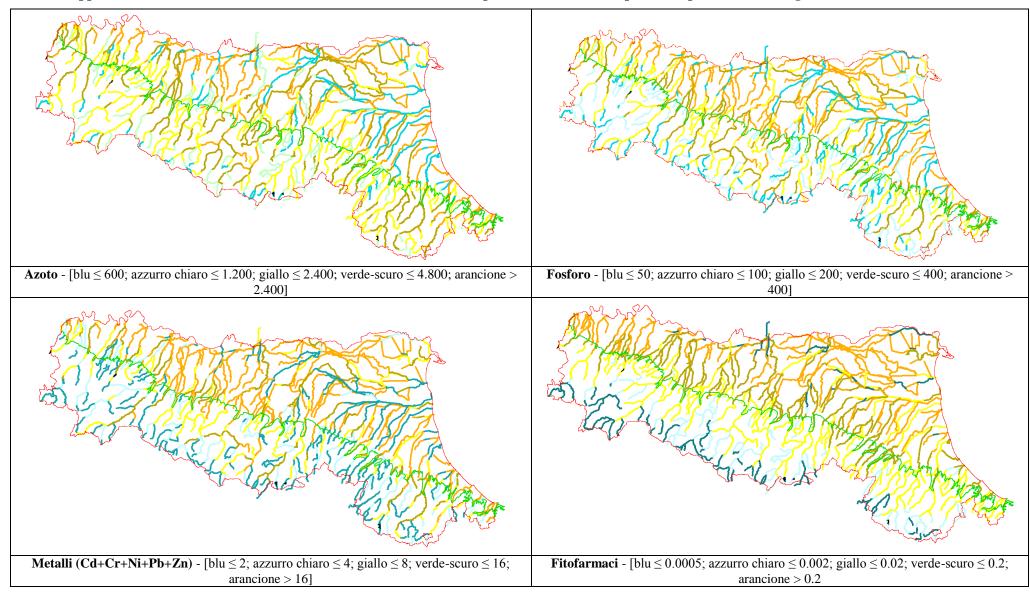

Tenuto conto che i carichi stimati per le aste, dedotti dai dati del monitoraggio, riguardano il periodo 2009-2011 (per una parte delle stazioni anche 2008), si sono valutati separatamente gli apporti di CRITERIA al reticolo nel quadriennio 2008-2011.

I valori ottenuti, per sotto-bacino, sono quindi stati utilizzati nella schematizzazione dell'Azoto totale sui corpi idrici.

Il diffuso apportato al reticolo passa da circa 18 a 22 mila t/anno di azoto totale. Come conseguenza il carico complessivo di azoto apportato ai fiumi dalle diverse fonti passa da circa 24 a 28 mila t/anno. Il carico ricostruito in chiusura dei bacini regionali passa da 20.5 a 24 mila t/anno, rispetto ad un dato dedotto dalle misure di 28-29 mila t/anno. Il recupero regionale ottenuto considerando la specificità idrologica del periodo 2008-2011 è di quasi la metà del quantitativo mancante.

Il confronto in chiusura dei bacini regionali, tra i carichi di N ricostruiti e quelli misurati (Figura 5.2) migliora sensibilmente, anche se vi sono alcuni grossi bacini che mantengono una evidente sottostima degli apporti quali Panaro, Parma, Taro e in misura minore Secchia.

Figura 5.2 Relazione tra carichi ricostruiti e misurati



La restante frazione mancante può essere imputata alle diverse fonti, ma soprattutto all'apporto dovuto alle liquamazioni ai suoli agricoli con criteri spesso non ottimali (ad es. distribuzione non equa su tutte le superfici utili di spandimento dichiarate).

5.7.2 Rappresentazioni di sintesi

La Figura 5.3 fornisce una rappresentazione degli apporti rispettivamente di Azoto, Fosforo, metalli e fitofarmaci dall'insieme delle diverse fonti per sotto-bacino di corpo idrico.

Figura 5.3 Apporti di Azoto, Fosforo, metalli e fitofarmaci dalle diverse fonti per sotto-bacino di corpo idrico, per km di asta (kg/km/anno)

La Tabella 5.5 fornisce una sintesi a livello regionale dei carichi di nutrienti, metalli e fitofarmaci apportati alle acque.

Tabella 5.5 Stima dei carichi di nutrienti, metalli e fitofarmaci apportati dalle maggiori fonti al reticolo idrografico, ai corpi idrici, alle chiusure di bacino e confronto con i valori ottenuti dai monitoraggi

	N totale	P totale	Cadmio	Cromo	Nichel	Piombo	Zinco	Fitofar_ maci (*)
	(t/anno)	(t/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)
Apporti alla rete idrografica da:								
- depuratori civili	4.989	507	190	1750	4.500	1.560	42.600	-
- fognature non depurate	242	37	-	-	-	-	-	-
- case sparse non collettate	1.735	267	-	-	-	-	-	-
- scarichi industriali	212	55	10	526	610	230	2.310	-
- scaricatori di piena	1.445	451	80	860	4.270	860	42.800	-
- allevamenti ittici	48	3	-	1	-	-	ı	-
- diffuso sul suolo agrario	18.000	1.170	5	410	11.275	190	41.550	1.120
- fuori regione	1.300	68	-	-	150	-	830	-
Totale apporto alla rete idrografica	27.971	2.558	285	3546	20.805	2.840	130.090	1.120
Totale apporto ai corpi idrici tipizzati	24.100	1.980	264	3180	20.100	2.480	111.000	1.010
Totale ricostruito in chiusura di asta (a Po o in Adriatico)	20.800	1.220	206	1980	15.400	1.920	86.100	825
Carico sulle stazioni di monitoraggio poste più a valle (met. Annali)	28.700	1.150		720	17.700	390	106.000	770
- porzione immessa in Po	14.300	830		630	6.700	310	86.300	200
Carico sulle stazioni di monitoraggio poste più a valle (met. ISPRA-1)	30.000	1.400		411	15.900	270	192.000	890
Carico totale sul Po a Pontelagoscuro (FE)	173.000	8.800		3010	152.000	3.860	194.000	5.700
Incidenza carico regionale immesso in Po su carico totale del Po	8%	9%		21%	4%	8%	44%	4%
Apporti agricoli ai suoli	159.000	47.500	30	2.140	1430	990	169.370	320.000
Apporti atmosferici ai suoli	20.700	2.070						
Apporto alle falde della pianura dai suoli	10.800							
Apporto alle falde di conoide dai fiumi	645							

I ritrovamenti sono talmente esigui da rendere la valutazione non attendibile

Comprende un significativo apporto naturale dai suoli

(*) Sono considerati i 15 p.a. maggiormente ritrovati nelle acque

5.8 CARICHI INQUINANTI VEICOLATI VALUTATI SULLE STAZIONI DI OUALITÀ

5.8.1 Metodologia ARPA per la valutazione dei carichi

Una prima valutazione dei carichi di nutrienti, metalli, fitofarmaci e altre sostanze pericolose di origine industriale/artigianale, in relazione ai campionamenti 2009-2011, ha fatto riferimento al procedimento già impiegato da diversi anni da ARPA, che considera il prodotto tra portate medie e concentrazioni medie e che per i valori misurati al di sotto dei limiti di quantificazione, utilizza un criterio "probabilistico" di stima.

Per la stima dei carichi alle chiusure di bacino, oltre ai dati relativi ai carichi veicolati dalle aste principali, si utilizzano anche i dati relativi ai carichi di alcuni affluenti delle stesse, soprattutto quando l'ultima stazione verso valle sul corso d'acqua immissario del Po o dell'Adriatico risulta ricevere a monte ulteriori apporti anch'essi monitorati. E' il caso del T. Arda, del F. Taro, del T. Parma, del F. Secchia, del Collettore Burana-Navigabile, del T. Bevano e del F. Rubicone.

I carichi complessivi ottenuti per azoto totale, fosforo totale, COD, metalli e fitofarmaci, nonché la loro suddivisione tra gli affluenti del Fiume Po e gli affluenti diretti dell'Adriatico, sono raccolti come sintesi nella Tabella 5.6. In essa compare anche il confronto con le corrispondenti valutazioni fatte in precedenza, con riferimento al periodo 2005-2008 e con quelle tratte dal vigente Piano di Tutela delle Acque (dati 1997-2001); per queste ultime mancano metalli e fitofarmaci, allora non considerati.

Fosforo, COD, metalli e fitofarmaci risultano solitamente in calo o stazionari; l'azoto appare invece in incremento, in particolare nell'ultimo periodo. Al riguardo si è fatto anche il confronto tra le concentrazioni medie di N totale rilevate alle chiusure delle aste principali, pervenendo ad un incremento medio della concentrazione tra 2005-2008 e 2009-2011 del 17%.

Tabella 5.6 Confronto tra i carichi medi 2009-2011, carichi 2005-2008 e i valori ricavati nel PTA 2005 (1997-2001)

	Azoto totale	Fosforo totale	COD (t/anno)	Totale Metalli	Totale Fitofarmaci
	(t/anno)	(t/anno)		(t/anno)	(kg/anno)
Totale RER 2009-2011	28.677	1.153	96.402	141	790
Affluenti Po 2009-2011	14.348	829	49.181	105	204
Affluenti Adriatico 2009-2011	14.329	324	47.221	36	586
Carico Po a Pontelagoscuro 2009-2011	172.801	8.797	424.169	469	5734
- incidenza affluenti emiliani	8%	9%	12%	22%	4%
Totale RER 2005-2008	20.678	1.134	82.659	167	905
Affluenti Po 2005-2008	9.479	709	40.141	77	314
Affluenti Adriatico 2005-2008	11.200	425	42.517	90	591
Totale RER 1997-2001 (PTA 2005)	18.925	1.686	147.128	_	-
Affluenti Po 1997-2001 (PTA 2005)	9.372	1.168	7.0244	-	-
Affluenti Adriatico 1997-2001 (PTA 2005)	9.553	518	76.884	-	-
Variazione rispetto al 1997-2001	52%	-31%	-34%	-	
Variazione rispetto al 2005-2008	39%	3%	18%	-16%	-13%

5.8.2 Metodologia ISPRA per la valutazione dei carichi

La metodologia precedentemente rappresentata si basa sul prodotto tra la concentrazione media stagionale dell'inquinante e la corrispondente portata media stagionale; sono effettuate opportune assunzioni nel caso le concentrazioni rilevate risultino inferiori al limite di quantificazione (LOQ).

Il calcolo dei carichi inquinanti è stato condotto anche con la metodologia indicata da ISPRA nel documento "Standard informativo per l'inventario dei rilasci da fonte diffusa, degli scarichi e delle perdite delle sostanze prioritarie e delle sostanze chimiche non appartenenti all'elenco di priorità dell'Art. 78 ter D.Lgs. 3 aprile 2006 n. 152 e ss.mm.ii" – Vers. 1.0 del 28 novembre 2011.

Esso si basa sul prodotto tra le concentrazioni istantanee rilevate e le corrispondenti portate presenti (misurate o ricostruite) e su un riproporzionamento alle portate medie, nonché su specifici criteri di approssimazione del dato in presenza di rilevamenti inferiori ai LOQ; in particolare una prima indicazione dell'Autorità di Bacino del Fiume Po prevedeva che:

- nel caso di dati con almeno il 50% dei campioni superiori ai LOQ, per quelli inferiori c=LOQ/2;
- nel caso di dati con meno del 50% dei campioni superiori ai LOQ, per quelli inferiori c=0.

Dal confronto dei risultati ottenuti con i due metodi è emerso che, nel caso in cui i campioni raccolti abbiano mostrato sempre o quasi sempre un riscontro analitico positivo, le differenze tra i due metodi in termini di carichi regionali complessivi sversati in Po e Adriatico non eccedono il 20%. Nel caso in cui i risultati analitici siano risultati positivi solo occasionalmente, le differenze nei risultati ottenuti con i due metodi sono spesso maggiori, con un dato medio attorno al 50%.

La Tabella 5.7 propone i quantitativi regionali, oltre a fornire il confronto tra i carichi ottenuti con i due metodi.

Successivamente ISPRA ha ritenuto opportuno fissare i LOQ di riferimento, assumendoli pari al 30% degli standard di qualità ambientale (SQA) per le singole sostanze.

In presenza di più di un riscontro analitico positivo, quindi, i dati inferiori al LOQ di riferimento devono essere posti pari a LOQ/2 (quindi a 0.15 • SQA).

Si è valutato che in questo modo, per le sostanze con riscontri positivi occasionali, si produce una forte sovrastima dei carichi (si veda l'ultima riga di Tabella 5.7).

Tabella 5.7 Carichi 2009-2011 con metodologia ISPRA alle chiusure delle principali aste (ISPRA-1) – nutrienti e COD in t/anno, gli altri in Kg/anno

Asta	Azoto	Fosforo	COD	As	Cr	Hg	Ni	Pb	Cu	Zn	Aceto_	Azoxi_	Benta_	Etofu_	Lenacil	Meco_	Meta_	Meta_	Meto_
	totale	totale			totale						clor	strobin	zone	mesate		prop	laxil	mitron	laclor
F. Po all'altezza di Ferrara	175.644	10.783	443.355	93.583	2.713	40		6.653	21.410	52.840	159	937	32	0	0	0	0	22	1105
R. BARDONEZZA	66	1	122	0	0	0	14	0	4	13	0	0	0	0	0	0	0	0	0
R. LORA - CAROGNA	32	0	73	0	0	0	18	0	0	41	0	0	0	0	0	0	0	0	0
R. CARONA - BORIACCO	135	6	272	0	0	0	32	1	0	71	0	0	0	0	0	0	1	0	0
T. TIDONE	563	16	712	0	0	0	7	0	0	0	2	0	0	0	0	0	0	0	0
F. TREBBIA	712	35	1.341	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
T. NURE	178	1	306	0	0	0	0	0	0	116	0	0	0	0	0	0	0	0	0
T. CHIAVENNA	795	14	960	0	0	0	1	0	0	96	1	0	0	0	0	0	1	0	2
T. ARDA	955	27	1.353	4	0	0	126	0	23	96	2	0	5	0	0	0	2	0	21
F. TARO	2.492	60	2.685	46	0	0	416	2	53	246	6	0	0	0	0	0	0	0	1
T. PARMA	2.030	162	4.306	3	0	0	1.139	0	38	1.385	0	0	0	0	0	0	2	0	1
T. ENZA	1.323	183	14.248	2	0	0	765	26	0	29.489	0	0	0	0	0	0	0	1	2
T. CROSTOLO	931	66	4.376	83	54	1	476	0	178	63.445	0	0	0	0	0	0	0	1	4
F. SECCHIA	2.551	314	24.844	165	123	0	1.913	2	1.265	56.748	8	0	0	0	3	0	0	3	49
F. PANARO	2.499	179	8.837	114	88	0	1.221	153	0	22.507	1	0	0	0	0	0	2	0	5
C.1 BIANCO	21	1	40	8	0	0	16	0	0	35	0	0	0	0	0	0	0	0	0
PO DI VOLANO	1.745	47	7.646	491	0	1	3.258	59	0	1.675	1	103	0	1	2	0	1	1	17
C.le NAVIGABILE	2.828	62	7.317	795	0	0	2.263	0	230	3.143	1	8	0	1	3	2	1	6	37
F. RENO	4.530	84	11.056	159	123	5	1.971	0	1.186	3.610	0	1	3	4	19	1	0	2	19
C.le DX RENO	782	18	2,426	197	0	1	510	4	526	2.129	0	1	0	2	2	0	4	1	2
F. LAMONE	582	6	2.127	68	0	0	247	0	302	815	0	0	0	0	0	0	0	0	0
CAN. CANDIANO	353	43	2.907	28	0	0	25	0	0	75	0	0	0	0	0	2	0	0	0
F. UNITI	1.107	16	3.626	36	0	0	234	0	66	3.428	1	0	0	0	0	0	0	0	2
T. BEVANO	383	7	845	30	2	1	100	0	107	309	0	0	0	0	1	8	0	0	4
F. SAVIO	826	9	1.686	0	0	0	176	0	3	543	0	0	0	0	0	0	0	0	0
F. RUBICONE	443	5	719	32	19	0	154	10	431	513	0	0	0	0	0	0	0	0	0
F. USO	90	2	199	0	1	0	87	0	28	22	0	0	0	0	0	0	0	0	0
F. MARECCHIA	681	18	1.596	7	0	0	458	0	33	70	0	0	0	0	0	0	1	0	0
R. MARANO	89	2.	275	0	0	0	32	0	7	474	0	0	0	0	0	0	0	0	1
T. CONCA	137	1	296	8	0	0	86	10	75	163	0	0	0	0	0	0	0	0	0
R. VENTENA	164	5	291	3	0	0	109	0	53	225	0	0	0	0	0	0	0	0	0
T. TAVOLLO	45	2	166	0	0	1	0	0	12	394		0	0	0	0	0	0	0	0
T. T.T. OEBO	FJ		130					Ů	12	374									
Totale (escluso Po)	30.065	1.392	107.652	2.279	411	12	15.852	265	4.620	191.877	23	113	8	9	30	14	17	14	170
Tot. con O medie (Ann.ARPA)	28.677	1.153	96.402	3.034	727	9	17.696	390	13.082	106.130	14	122	10	10	33	9	16	13	108
m . 1 I OO :	20.775	1 207	105.566	2.212	402	0.4	25.010	1.004	4.047	107.470	21	140	22	27	<i>C</i> 4	30	(0)		220
Totale con LOQ imposti	29.775	1.397	105.566	2.212	402	24	25.818	1.884	4.247	187.478	31	140	22	27	64	30	68	56	220

Tabella 5.7 - segue

Asta	Oxa diazon	Pirazone (clorida zon-iso)	Pro paclor	Terbutila zina (+desetil)	O- Xilene	M,P- Xileni	Tricloro metano	1,1,2,2 Tetraclo roetilene	Tolue ne	Ftalato di bis(2-etilesile) (DEHP)	Nafta lene	Cloroal cani C10-C13	Somma PBDE	Ottil fenolo	2,4,5- Triclo rofenolo	2,4,6- Triclo rofenolo	Penta clorofe nolo
F. Po altezza Ferrara	2.074	193	0	2.498	0	0	0	287	0	0	22	0	6	0	681	0	211
R. BARDONEZZA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R. LORA - CAROGNA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R. CARONA - BORIACCO	0	0	0	1	0	0	0	25	0	0	0	0	0	0	0	0	0
T. TIDONE	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	0	0
F. TREBBIA	4	0	0	1	0	0	0	0	0	0	0	3	0	0	0	0	9
T. NURE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T. CHIAVENNA	1	1	0	5	0	0	0	3	0	0	0	1	0	0	0	0	1
T. ARDA	3	2	0	17	0	0	0	0	0	0	0	1	0	0	1	0	0
F. TARO	0	2	0	4	0	0	12	0	0	0	0	5	0	0	0	0	0
T. PARMA	0	9	0	11	0	0	31	0	0	0	0	0	0	0	0	0	2
T. ENZA	1	4	0	2	0	2	13	0	0	127	0	0	0	0	0	0	0
T. CROSTOLO	0	2	0	4	0	0	3	48	0	9	0	2	0	0	0	0	0
F. SECCHIA	1	27	1	70	1	3	7	9	0	16	1	9	0	4	0	0	0
F. PANARO	0	4	3	20	0	0	2	0	0	70	0	0	0	0	0	0	0
C.1 BIANCO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PO DI VOLANO	28	5	0	32	0	0	0	0	0	0	0	0	0	0	0	0	0
C.le NAVIGABILE	5	21	3	101	0	0	5	3	0	0	1	0	0	0	1	0	9
F. RENO	0	23	8	42	0	0	0	0	0	138	0	0	0	0	0	13	4
C.le DX RENO	0	3	0	6	0	0	0	0	0	80	0	0	0	0	0	0	0
F. LAMONE	0	0	0	1	0	0	0	0	0	82	0	0	0	0	6	0	1
CAN. CANDIANO	0	1	0	1	0	0	1	0	0	99	0	0	0	0	0	0	0
F. UNITI	0	0	0	2	0	0	0	0	0	97	0	0	0	1	0	0	0
T. BEVANO	0	1	1	5	0	0	0	0	0	29	0	0	0	0	0	1	0
F. SAVIO	0	0	0	0	0	0	0	0	0	29	0	5	0	0	0	0	0
F. RUBICONE	0	0	0	0	0	0	1	2	0	18	0	0	0	0	0	0	0
F. USO	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
F. MARECCHIA	0	0	0	0	0	0	10	0	0	29	1	0	0	0	0	0	0
R. MARANO	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0
T. CONCA	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0
R. VENTENA	0	0	0	0	0	0	12	4	1	2	0	0	0	0	0	0	0
T. TAVOLLO	0	0		0	0	0	1	0	0		0	0	0				
Totale (scluso Po)	45	105	16	328	1	4	98	94	2	862	2	26	1	5	9	13	26
Tot. con Q medie (Ann ARPA.)	44	97	18	277	19	54	276	43	9	1.090	3	79	2	6	3	16	98
Totale con LOQ imposti	95	142	44	419	15	18	1.833	1.019	7	1.165	631	250	252	8	11	21	165

5.9 LE CRITICITÀ RISCONTRATE SUI CORPI IDRICI DEL RETICOLO IDROGRAFICO CHE DETERMINANO UNO STATO "NON BUONO"

Il D.Lgs. 152/06 definisce le modalità di classificazione dello stato ambientale dei corpi idrici superficiali. I parametri che concorrono alla definizione dello stato sono:

- LIMeco (nutrienti e OD Ossigeno Disciolto);
- elementi chimici a supporto;
- elementi chimici che definiscono lo "stato chimico" (sostanze prioritarie e pericolose prioritarie);
- elementi biologici, che sono influenzati, oltre che dai 3 precedenti, dalle condizioni idrologiche e morfologiche;
- gli aspetti idrologico e morfologico direttamente non determinano mai il passaggio dal buono al non buono, ma solo dall'elevato al buono.

5.9.1 Le criticità sul LIMeco

Il LIMeco è sicuramente il parametro più critico per i corpi idrici fluviali della regione, sia per le aste naturali che per quelle artificiali. I 3 elementi che contribuiscono a tale criticità sono: Azoto, Fosforo e Ossigeno disciolto; il primo è senza dubbio quello che, mediamente, determina il punteggio peggiore (più basso); si considerano al riguardo Nitrati e Ammoniaca.

L'Azoto che viene veicolato verso i corpi idrici superficiali, così come emerge dalle analisi descritte nei paragrafi precedenti, deriva per il 74% da diffuso agricolo (concimazioni chimiche e reflui zootecnici), per il 23% dai depuratori urbani e scaricatori, per l'1% da scarichi industriali direttamente in corpo idrico superficiale e per il 2% da altre fonti.

Azoto e fosforo hanno le stesse fonti; il fosforo però è meno solubile e questo fa sì che, mediamente, la sua asportazione da parte delle acque sia più contenuta, salvo che nel corso degli eventi di piena, per via dell'elevata presenza di fosforo particellato nel flusso solido in sospensione.

Per ogni corpo idrico del reticolo naturale e artificiale, come evidenziato in precedenza, è stata condotta una stima dei carichi immessi e di quelli in transito, che date le portate medie ricostruite, determina una valutazione delle concentrazioni medie. In Figura 5.4 sono rappresentati i risultati relativi al confronto tra concentrazioni ricostruite e misurate per il parametro N totale in corrispondenza delle stazioni di misura disponibili.

Poiché la taratura condotta ha fatto riferimento esclusivamente a parametri di livello regionale, mentre una taratura più approfondita condotta asta per asta potrebbe in parte migliorare le corrispondenze soprattutto nei casi in cui il ricostruito è maggiore del misurato, per migliorare il livello di analisi, sulle ricostruzioni delle concentrazioni annue dell'N per i corpi idrici, è stato condotto un opportuno riproporzionamento, bacino per bacino, sulla base dei valori rilevati nelle stazioni.

Il 68% dei bacini o sotto-bacini considerati richiedono un coefficiente di correzione dell'N tra 0.8 e 1.3; il 20% tra 0.5 e 0.8 (solitamente in piccoli bacini); il 12% tra 1.3 e 1.5 (alcuni grandi bacini); il che significa, per questi ultimi, mediamente una sottostima nella ricostruzione dei carichi allontanati del 30%.

Il risultato del riproporzionamento è fornito in Figura 5.5.

Dalla ricostruzione/riproporzionamento sui corpi idrici della rete idrografica regionale si è evidenziato il numero di essi:

- 1) con N (nitrico + ammoniacale) mediamente inferiore al 50% del "limite" previsto da un "livello 2" del LIMeco (buono per il solo N);
- 2) con N mediamente inferiore al "limite":
- 3) con N mediamente inferiore a 2 volte il "limite";
- 4) con N mediamente inferiore a 4 volte il "limite";
- 5) con N mediamente inferiore a 8 volte il "limite";

6) con N mediamente superiore a 8 volte il "limite"; dove il limite è stato posto a 1.26 mg/l di N (nitrico+ammoniacale).

Le risultanze sono contenute in Figura 5.6, separando i corpi idrici della rete naturale da quelli delle aste artificiali, che appaiono molto più compromessi.

Figura 5.4 Relazione tra concentrazione ricostruita e misurata dell'N totale (mg/l) nelle stazioni di misura della rete di monitoraggio

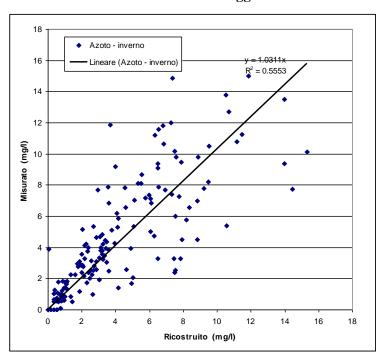


Figura 5.5 Relazione tra concentrazione ricostruita e misurata dell'N totale (mg/l) nelle stazioni di misura della rete di monitoraggio dopo riproporzionamento dei valori a livello di bacino

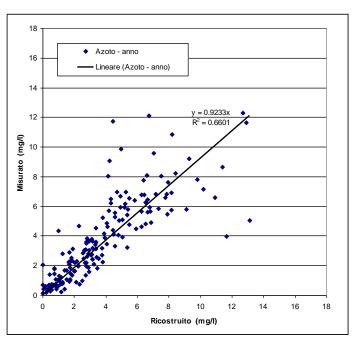
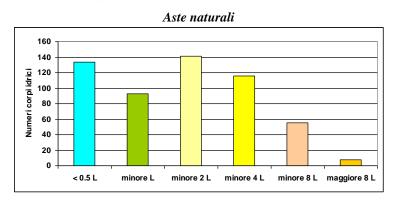
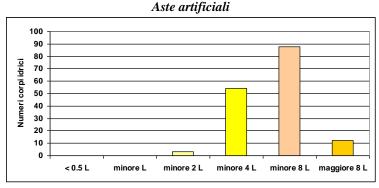




Figura 5.6 Numero di corpi idrici in relazione al confronto N ricostruito (nitrico + ammoniacale) rispetto a N_{limite} (L)

Dal settore agricolo arriva alla rete idrografica principale circa il 10% del carico di Azoto apportato al campo. Per contenere tale quantitativo occorre incidere sia sugli apporti zootecnici (spandimenti/liquamazioni), cercando di distribuire il carico su superfici agricole che siano le più ampie possibili, sia sulle necessità degli apporti chimici, contenendo e razionalizzando gli utilizzi sulle colture maggiormente impattanti.

In Figura 5.7, si sono individuati tutti i sotto-bacini che evidenziano un significativo apporto di Azoto ai corsi d'acqua, considerando, fra i diversi aspetti esaminati, la presenza di un contributo per unità di SAU superiore ai 12 kg N/ha.

Poiché la maggior parte delle aste naturali nei tratti della pianura, scorrono pensili a causa della presenza delle opere di arginatura per la difesa dalle alluvioni, di fatto non drenano direttamente le aree circostanti. Pertanto, per favorire un progressivo recupero sull'Azoto per i corsi d'acqua di pianura, potrebbe essere opportuno agire sulla fascia collinare a monte.

Al fine di individuare possibili aree di interesse per la predisposizione di interventi per il contenimento degli apporti di Azoto ai corsi d'acqua, è stata condotta un'analisi i cui i risultati sono rappresentati sempre in Figura 5.7. E' stato valutato che, se sul corpo idrico il rapporto *N ricostruito/N limite per il "Livello 2" del LIMeco*, corrispondente al buono, è inferiore a 1.5 e se la percentuale del relativo sotto-bacino interessata da interventi supera una certa soglia (67%), determinata tenendo conto della presenza di aree particolari quali le Zone Vulnerabili ai Nitrati, si valuta un recupero al 2021, in caso contrario al 2027.

In Figura 5.8 viene rappresentata l'area in cui sarebbe opportuno prevedere misure per il contenimento degli apporti di azoto. La fascia di intervento prioritaria (Area di interesse per il miglioramento dello stato dei corpi idrici) ha una estensione di circa 4.100 kmq. I comuni ricadenti in tale Area di interesse sono riportati in Tabella 5.8.

Figura 5.7 Sottobacini con apporti significativi di Azoto alla rete idrografica

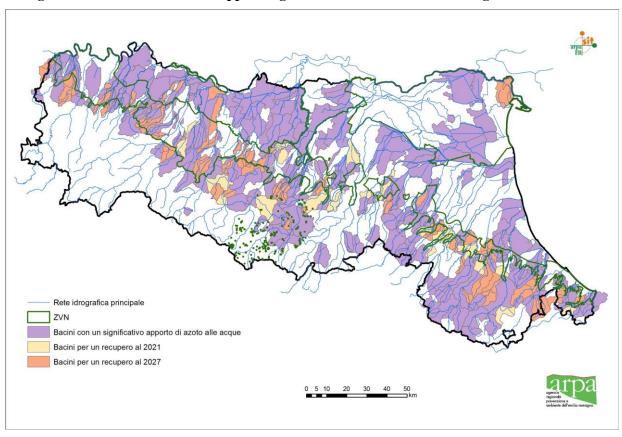


Figura 5.8 Area di interesse per il miglioramento dello stato dei corpi idrici

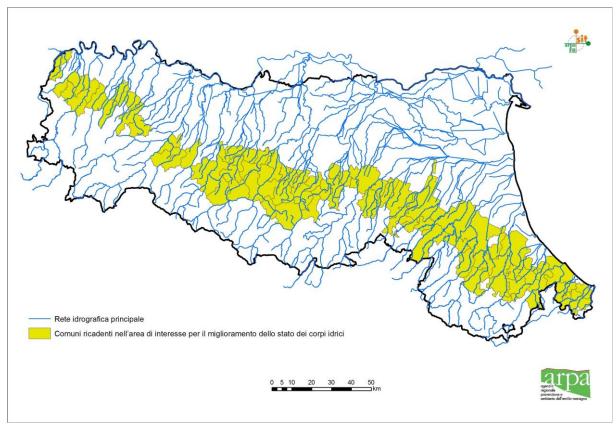


Tabella 5.8 Comuni ricadenti nell'Area di interesse per il miglioramento dello stato dei corpi idrici

Provincia	Comune					
	033001-Agazzano;	033025-Gropparello;	033043-Travo;			
Piacenza	033011-Carpaneto Piacentino;	033033-Pianello Val Tidone;	033044-Vernasca;			
	033012-Castell'Arquato;	033034-Piozzano;	033045-Vigolzone;			
	033013-Castel San Giovanni;	033036-Ponte dell'Olio;	033048-Ziano Piacentino.			
	033022-Gazzola;	033038-Rivergaro;				
Parma	034008-Calestano;	034018-Langhirano;	034028-Pellegrino Parmense;			
	034017-Fornovo di Taro;	034024-Neviano degli Arduini;	034038-Terenzo.			
	035001-Albinea;	035014-Castellarano;	035040-Scandiano;			
Reggio- Emilia	035003-Baiso;	035016-Castelnovo ne'Monti;	035042-Vetto;			
	035011-Carpineti;	035018-Canossa;	035043-Vezzano sul Crostolo;			
	035012-Casalgrande;	035030-Quattro Castella;	035044-Viano.			
	035013-Casina;	035038-San Polo d'Enza;				
	036008-Castelvetro di Modena;	036030-Pavullo nel Frignano;	036041-Savignano sul Panaro;			
	036013-Fiorano Modenese;	036032-Polinago;	036042-Serramazzoni;			
Modena	036017-Guiglia;	036033-Prignano sulla Secchia;	036046-Vignola;			
	036019-Maranello;	036040-Sassuolo;	036047-Zocca.			
	036020-Marano sul Panaro;					
	037006-Bologna;	037020-Castel San Pietro Terme;	037043-Monteveglio;			
	037007-Borgo Tossignano;	037023-Crespellano;	037046-Ozzano dell'Emilia;			
Bologna	037011-Casalecchio di Reno;	037025-Dozza;	037047-Pianoro;			
	037012-Casalfiumanese;	037032-Imola;	037054-San Lazzaro di Savena;			
	037018-Castello di Serravalle;	037042-Monte San Pietro;	037060-Zola Predosa.			
Ravenna	039004-Brisighella;	039010-Faenza;				
	039006-Castel Bolognese;	039015-Riolo Terme.				
Forlì- Cesena	040003-Bertinoro;	040009-Civitella di Romagna;	040028-Montiano;			
	040004-Borghi;	040012-Forli';	040032-Predappio;			
	040005-Castrocaro Terme e Terra	040018-Longiano;	040037-Roncofreddo;			
	del Sole;	040019-Meldola;	040046-Sogliano al Rubicone.			
	040007-Cesena;	040020-Mercato Saraceno;				
Rimini	099003-Coriano;	099011-Morciano di Romagna;	099018-Santarcangelo di			
	099004-Gemmano;	099012-Poggio Berni;	Romagna;			
	099004-Geniniano, 099005-Misano Adriatico;	099014-Rimini;	099019-Torriana;			
	099003-Misano Adriatico, 099007-Monte Colombo:	099015-Saludecio;	099020-Verucchio;			
	099008-Montefiore Conca:	099016-San Clemente;	099025-San Leo.			
	099010-Montescudo:	099017-San Giovanni in				
	077010-Wollieseddo,	Marignano;				

5.9.2 Le criticità sugli elementi chimici a supporto (Tab. 1/B del DM 260/2010)

Fra gli elementi chimici a supporto quelli che presentano a volte concentrazioni medie superiori ai relativi SQA (standard di qualità ambientale), nelle stazioni della rete regionale, sono alcuni fitofarmaci, sia in termini di singolo principio attivo che come sommatoria (Pesticidi totali - $SQA = 1 \mu g/l$).

La Tabella 5.9 fornisce, in ordine decrescente, il numero dei superi degli SQA nel triennio di monitoraggio 2010-2012, ma riporta anche, a titolo di confronto, la condizione relativa all'anno 2013. Per i principi attivi con pochi superi si riporta il bacino e per quelli maggiormente critici si forniscono le colture di impiego.

Si è valutato che la presenza di un solo supero possa essere ritenuta occasionale.

Tabella 5.9 Numero di superi dello SQA per gli elementi chimici a supporto, localizzazioni e impieghi

Principio attivo	2010	2011	2012	2013	Bacini / note	Totale	Emivita (g) [*]	Impieghi	
Metolaclor	10	0	5	13	Diversi, venduto come s-Metolaclor	28	55	Mais, pomodoro	
Terbutilazina (+event. Desetil)	2	0	1	13	Diversi, limitazioni alla vendita dal 2003	16	70	Mais, sorgo	
Acetoclor	5	0	0	0	Aste artificiali, cessata la vendita nel 2013	5	20	Mais	
Pirazone	1	0	1	3	Ongina, Parma, Reno, Dx Reno, Riolo	5	140	Barbabietola, cipolla	
Azoxistrobin	1	1	1	1	Po di Volano	4	180	Grano, pomodoro, ortive	
Metalaxil	1	0	2	1	Lora e Chero, Sissa-Abate, Marecchia	4	50	Vite, pomodoro, patata, ortive	
Oxadiazon	1	2	0	0	Trebbia, Po di Volano	3	130	Fruttiferi, pomodoro, vite, riso	
2,4 D	0	0	1	0	Rigosa	1			
MCPA	0	0	1	0	Rigosa	1	40		
Bentazone	0	1	0	0	Arda	1	150		
Metribuzin	0	1	0	0	Rigosa	1			
Pirimicarb	0	0	1	0	Sillaro	1			
Metamitron	0	0	0	1	Reno	1	10		
Propizamide	0	0	0	1	Uso	1	100		
Tiametoxan	-	-	-	1	Uso	1			
Pesticidi totali	5	2	1	5	Diversi	13			

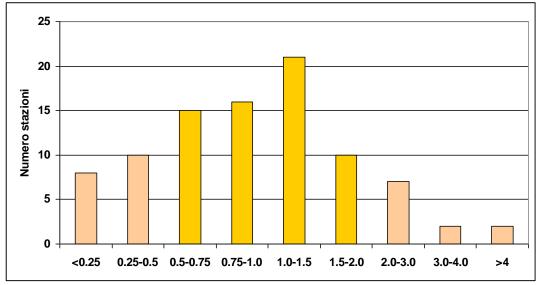
^[*] Stima dell'emivita in sedimento-acqua (suolo), cioè tempo di dimezzamento in giorni, tratto da bibliografia disponibile su internet

Esaminando i 7 principi attivi con più di un supero dello SQA, sulla base di indicazioni del Servizio Fitosanitario regionale, si osserva che:

- 1. il **Metolaclor** solitamente venduto come s-Metolaclor è quello più impattante, il quantitativo venduto appare costante, è sostituibile con Dimetenamide-P oppure Flufenacet;
- 2. la **Terbutilazina** dal 2003 presenta un uso limitato su mais e sorgo, con dose massima di 1 kg/ha; sarebbe impiegabile ad anni alterni; è sostituibile con Pendimetalin + Aclonifen ma con un aumento dei costi di circa il 40%;
- 3. per l'**Acetoclor** è cessata la vendita nel 2013, quindi negli anni successivi dovrebbe tendere a scomparire;
- 4. il **Pirazone** (**Cloridazon-iso**) è sostituibile con il Metamitron (quest'ultimo con un supero dello SOA nel 2013);
- 5. l'**Azoxistrobin** ha superato lo SQA sul solo bacino del Po di Volano, è qui sostituibile con altri pesticidi analoghi; sono da valutare le eventuali problematiche di questi ultimi;
- 6. il **Metalaxil** risulta facilmente sostituibile;
- 7. l'**Oxadiazon** è sostituibile con una miscela di Metribuzin, Pendimetalin e Aclonifen; è da valutare se è vantaggioso sostituire un prodotto con 3.

I 7 principi attivi considerati risultano anche ricostruiti come carichi e concentrazioni medi annui su tutti i corpi idrici superficiali interni della regione, nell'ambito della schematizzazione modellistica condotta.

Mentre per N e P nel LIMeco si considerano di fatto le condizioni medie, per i pesticidi ciò che deteriora localmente lo stato ecologico sono gli eventuali picchi stagionali rilevati, che in certi casi risultano consistenti e quindi alzano in maniera rilevante e forse anomala il dato medio.


Per i fitofarmaci la concentrazione media annua stimata in alveo è normalmente assai minore rispetto ai valori massimi riscontrati: i ritrovamenti sono molto rilevanti in primavera-estate, a seguito degli impieghi sulle colture ed in particolare dopo eventi di pioggia che dilavano i suoli agricoli.

Se si confrontano i superamenti dei singoli SQA, ma anche dei Pesticidi totali, sulle stazioni della rete, con le concentrazioni ricostruite, in qualche caso vi è coincidenza, più spesso però i valori medi simulati sono di 1 o anche 2 ordini di grandezza in meno degli stessi SQA. Non vi è quindi costanza del rapporto tra concentrazioni medie ricostruite e medie rilevate, che permetta di passare dal dato medio della schematizzazione ad un possibile valore rilevato per tutti i corpi idrici, da confrontare con lo SOA.

Una valutazione dei singoli principi attivi per ciascun corpo idrico risulta pertanto molto difficile. Risulta invece più stabile la situazione per i Pesticidi totali. Per essi, una volta scartati i casi in cui o il dato medio ricostruito o quello medio misurato risultano inferiori a 0.01 µg/l, per evitare confronti anomali, si è valutato il rapporto ricostruito/misurato, ottenendo quanto riportato in Figura 5.9. Circa il 70% dei dati stanno tra la metà e il doppio di un rapporto pari a 1, cioè dell'uguaglianza tra ricostruito e misurato.

Per i Pesticidi totali ricostruiti su base annua, anche assumendo cautelativamente un valore limite di $0.5~\mu g/l$ (al posto dello SQA pari a 1), sulla rete naturale tipizzata si avrebbero 12 superi, 2 soli dei quali coincidenti con superi reali dello SQA, sui 14 presenti (2019-2013), in termini di singoli principi attivi oppure di Pesticidi totali. Il criterio quindi si reputa non adeguato; se si abbassa il limite a $0.25~\mu g/l$ le coincidenze diventano 9, il criterio risulta quindi più attendibile. I picchi occasionali/stagionali rilevati su diverse stazioni, che sono in grado di alterare lo stato, rendono perciò incerta l'utilizzabilità dei dati medi della ricostruzione. Per quanto riguarda la rete artificiale, sulle 12 stazioni con supero dello SQA, si ha che: lo 0.25~e superato in 11~casi, lo 0.5~in~6, la soglia di $0.25~\mu g/l$ risulta qui particolarmente significativa.

Figura 5.9 Numero di stazioni in relazione al rapporto Pesticidi totali medi ricostruiti / Pesticidi totali medi misurati

Intervenendo sui principi attivi analizzati (escluso l'Acetoclor in quanto non più venduto dal 2014), si potrebbe migliorare considerevolmente il rischio di declassamento dello stato ecologico dei corpi idrici interessati, connesso agli elementi chimici a supporto.

L'obiettivo potrebbe essere quello di sostituire/ridurre, per quanto possibile, l'impiego dei principi attivi che appaiono più critici in termini di ritrovamenti, rispetto agli SQA, con altri che presentano una degradazione più rapida sui suoli ed entro la parte di suolo satura di acqua.

Le azioni di contenimento potrebbero essere previste prioritariamente dove le condizioni sul LIMeco (nutrienti) risultano favorevoli e nelle zone della pianura interagenti con le aree protette, ma anche più in generale sulle restanti aree della pianura drenate da corpi idrici artificiali, che evidenziano impieghi considerevoli.

I principi attivi di maggiore interesse a livello regionale sono Metolaclor, Terbutilazina, Pirazone (Cloridazon) e Azoxistrobin, che risultano essere i principi attivi con i maggiori superi dello SQA e pertanto quelli sui quali concentrare le possibili azioni di riduzione del carico veicolato ai corpi idrici.

La metodologia di valutazione degli impieghi a livello comunale dei principi attivi maggiormente ritrovati nelle acque superficiali ha considerato, per ogni principio attivo, oltre alle colture interessate, la percentuale delle stesse trattata e il quantitativo impiegato per ettaro; questi ultimi due dati sono stati stimati dal Servizio Fitosanitario della Regione a livello provinciale, con una ripartizione reale all'interno del territorio provinciale che potrebbe, quindi, non essere omogenea e da cui potrebbero derivare possibili sovra/sotto stime negli impieghi comunali.

Sono stati quindi individuati i comuni in cui questi 4 principi attivi sono effettivamente maggiormente impiegati.

Per ciascuno dei 4 principi attivi sono state definite opportune soglie di impiego, in termini di kg/km² di superficie comunale. La scelta delle soglie è risultata cautelativa, per fare rientrare nella lista dei comuni da esaminare la maggior parte di quelli con impieghi reali, che possono risultare rilevanti (per non scartare a priori comuni che sulla base degli impieghi medi provinciali sulle colture apparirebbero ad utilizzo limitato). Dopo una adeguata analisi, anche in relazione ai ritrovamenti e ai superi degli SQA nelle stazioni di monitoraggio sui corsi d'acqua e negli acquiferi, si sono assunte soglie di 0.25 kg/km² per l'Azoxistrobin, di 2.5 kg/km² per il Metolaclor, di 0.5 kg/km² per il Pirazone e di 2.5 kg/km² per la Terbutilazina.

Inoltre, allo scopo di non scartare comuni che potrebbero risultare di rilievo, per ciascuno dei 4 principi attivi considerati, sulla base di valutazioni effettuate sui ritrovamenti inerenti le Reti di monitoraggio dei corsi d'acqua e degli acquiferi si sono considerati:

- le stazioni di monitoraggio valutando nell'ordine: i superi dello SQA, le concentrazioni medie rilevate superiori a prefissate soglie, il numero dei ritrovamenti superiore ad un certo valore; si sono quindi aggiunti i comuni ritenuti dubbi ma arealmente rilevanti in termini di dreno sui corpi idrici delle stazioni impattate e sui corpi idrici immediatamente a monte;
- i pozzi monitorati valutando tutti i ritrovamenti superiori all'unità; integrando negli elenchi i comuni sui quali detti pozzi sono posizionati.

I risultati dell'analisi hanno portato ad individuare 125 comuni sensibili per l'Azoxistrobin, 156 per il Metolaclor, 132 per il Pirazone e 161 per la Terbutilazina, rispetto ad un totale di 348 comuni presenti in regione (Figura 5.10).

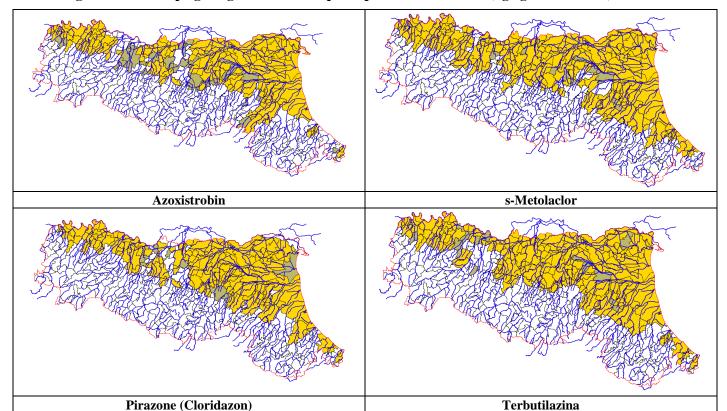


Figura 5.10 Impieghi significativi dei 4 principi attivi considerati (i grigi sono incerti)

Per la valutazione delle aree prioritarie drenanti nella rete naturale si è proceduto a:

- a) individuare i corpi idrici naturali con concentrazione media della somma dei 16 fitosanitari di cui si è modellata la presenza, oltre gli $0.25 \mu g/l$;
- b) selezionare i corpi idrici per i quali almeno il 60% della concentrazione ricostruita è relativa ai 4 principi attivi considerati per le misure;
- c) individuare i sotto-bacini che maggiormente contribuiscono alla presenza dei 4 principi attivi sui corpi idrici naturali ottenuti;
- d) verificare la presenza dei 4 principi attivi considerati nelle stazioni monitorate verso valle o che comunque vi sia un effettivo impiego degli stessi sulle colture arealmente presenti;
- e) incrociare i sotto-bacini rimanenti con i comuni e considerare fra questi ultimi quelli interessati per almeno il 50% della superficie comunale o che contengono la maggior parte dei sotto-bacini di interesse:

Dall'analisi si perviene ai sotto-bacini e ai comuni rappresentati in Figura 5.11. L'elenco puntuale dei comuni sottesi è fornito in Tabella 5.10.

Figura 5.11 Sotto-bacini e comuni (contorno in viola) interessati da elevati carichi dei 4 principi attivi considerati

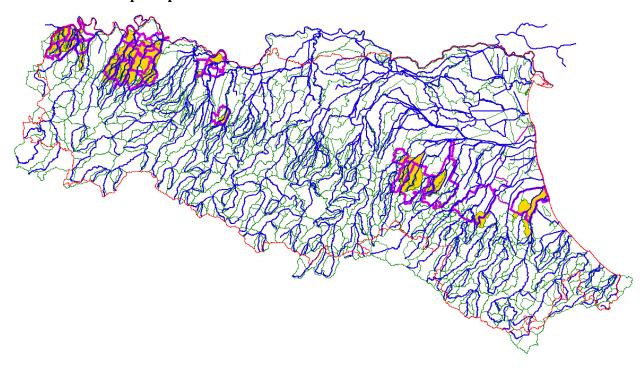


Tabella 5.10 Comuni interessati da eventuali misure per la riduzione dell'utilizzo di prodotti fitosanitari

Provincia	Comune	
	33002-Alseno;	33021-Fiorenzuola d'Arda;
	33003-Besenzone;	33024-Gragnano Trebbiense;
	33006-Borgonovo Val Tidone;	33037-Pontenure;
	33007-Cadeo;	33039-Rottofreno;
Piacenza	33010-Caorso;	33040-San Giorgio Piacentino;
	33011-Carpaneto Piacentino;	33041-San Pietro in Cerro;
	33012-Castell'Arquato;	33042-Sarmato;
	33013-Castel San Giovanni;	33046-Villanova sull'Arda;
	33018-Cortemaggiore;	33048-Ziano Piacentino.
Parma	34010-Colorno;	34041-Torrile;
Failla	34023-Montechiarugolo;	34043-Trecasali.
	37020-Castel San Pietro Terme;	37032-Imola;
Bologna	37021-Castenaso;	37046-Ozzano dell'Emilia.
	37025-Dozza;	
		39014-Ravenna – parziale (da Fosso
Ravenna	39010-Faenza;	Ghiaia a confini comunali sud e sud-
		est).

5.9.3 Le criticità sulle sostanze chimiche di Tab. 1/A del D. 260/2010

Le sostanze chimiche di cui alla Tab. 1/A del D.M. 260/2010 fanno fallire lo stato chimico "buono" 2010-2013 su un numero molto contenuto di stazioni (5) relative ai corsi d'acqua della regione. Considerando il triennio di monitoraggio 2010-2012 in altri 13 casi "puntuali" 2 sostanze: Difenileteri bromati e Ftalato (DEHP), hanno superato, un solo anno, lo SQA; il non supero 2 anni su 3, il non supero nel 2013 e la bassa confidenza attribuita alla misura del dato hanno fatto sì che lo stato chimico sia considerato "buono". Tenuto conto che di queste 13 stazioni, 12 presentano uno stato "ecologico" non buono, lo stato complessivo ambientale non cambia.

Per 3 stazioni in chiusura di Secchia, Reno e Uso la criticità è stata mantenuta, risultando il supero dello SQA su più annualità.

Difenileteri bromati e Ftalato (DEHP) sono sostanze ubiquitarie (principalmente additivi utilizzati nella produzione dei materiali plastici, per conferire loro determinate caratteristiche), che non derivano quindi da fonti puntuali al momento individuabili.

Per queste 2 sostanze la letteratura tecnica di settore ne individua la presenza di frequente, sia pure a bassissime concentrazioni, negli scarichi dei depuratori civili e a volte di certi settori industriali.

Gli Ftalati sono conosciuti dagli anni '20 del secolo scorso, ma il loro uso più massiccio si è avuto dagli anni '50, con l'introduzione del PVC; dei Difenileteri Bromati si è iniziato probabilmente l'utilizzo negli anni '70. Un'altra fonte di generazione potrebbe essere connessa al dilavamento delle discariche degli anni '70, '80 e '90. Il dilavamento dovrebbe ripercuotersi localmente sulle falde libere di conoide e freatiche e, soprattutto da queste ultime, potrebbe fluire come dreno verso la rete idrografica. Questa possibile fonte è però da ritenersi marginale, in relazione agli elevatissimi coefficienti di adsorbimento (KOC) delle 2 sostanze, cioè alla forte propensione all'adsorbimento delle stesse alle particelle del suolo in vicinanza della fonte.

In Tabella 5.11, sono riportati i superi dello SQA per altre sostanze monitorate nel triennio 2010-2012, unitamente alle pressioni potenziali note e attinenti presenti sull'ambito drenato, nonché agli approfondimenti conoscitivi che si ritengono opportuni.

In fondo alla tabella è riportato anche l'unico supero dello SQA registrato nel 2013.

Tabella 5.11 Superamenti occasionali degli SQA relativamente allo stato chimico da sostanze non ubiquitarie, pressioni potenziali sull'ambito drenato e approfondimenti richiesti

Parametro	Asta	Cod. Stazione e posizione	Codice corpo idrico	Limite SQA	Ritrovamenti nella stazione	Scarichi sul corpo idrico o note	Approfondimenti utili
Nichel (2012)	C.le Naviglio	01171700 in chiusura di	011712000000 1 ER	media 20 μg/l	Nel triennio: riscontri > LOQ in praticamente tutti i campionamenti, con dato medio sul	3 depuratori tra i quali Parma Est per un totale di circa 100.000 A.E. N. 12 scarichi produttivi in CIS per circa 1 Mm³/anno di apporto idrico.	Effettuazione indagini al depuratore di Parma Est, predisporre analisi con LOQ come da DM 260/2010
	(Parma)	asta	T EX	, NO 1	triennio (non annuale) di 18 µg/l	Il sotto-bacino non presenta concentrazioni naturali rilevanti di Ni nei suoli.	Effettuazione controlli agli scarichi di 2 aziende produttive potenzialmente impattanti
Mercurio (2012)	C.le Quarantoli (Burana- Navigabile)	05000200 in chiusura di asta Quarantoli	050100000000 1 ER	media 0.03 µg/l (max 0.06)	Un unico ritrovamento a 0.12 μg/l	Depuratori di Mirandola e Concordia per circa 30.000 A.E. Porzione extra-regionale (MN). N. 5 scarichi produttivi in CIS, nessuno dei quali sembra essere particolarmente impattante, per circa 0.3 Mm³/anno di apporto idrico	Nessuno – ritrovamento occasionale
Diuron (2011)	F. Uso	17000300	170000000000 7 ER	media 0.2 µg/l (max 1.8)	Unico picco rilevato oltre SQA di 6.4 µg/l, nelle restanti misure non rintracciato o in rari casi abbondantemente sotto lo SQA.	Si tratta di un diserbante non più in commercio dal 2008 e del quale nel 2010 e 2011 erano utilizzati in regione pochi chilogrammi.	Nessuno – ritrovamento occasionale
Triclorometano (2010)	T. Ventena	23000200 a circa 1.3 km da foce	230000000000 2 ER	media 2.5 μg/l	Ritrovato in oltre la metà dei campioni, con mediana sui ritrovamenti a 1.1 µg/l	Depuratori di Cattolica da quasi 60.000 A.E. e di Saludecio (430 A.E.)	Effettuazione indagini al depuratore di Cattolica, predisporre analisi con LOQ come da DM 260/2010 (come).
Triclorometano (2013)	F. Uso	17000350	170000000000 7 ER	media 2.5 μg/l	Sempre ritrovato, con mediana di 0.7 μg/l.	Fino all'anno 2012 la stazione era più a monte e l'inquinante non era presente. Nel sotto-bacino tra la posizione precedente e l'attuale sono presenti: - il depuratore di Bellaria-Igea Marina; - n. 6 scarichi produttivi di cui 5 agricoli e 1 di produzioni edili.	Effettuazione indagini al depuratore di Bellaria-Igea Marina, predisporre analisi con LOQ come da DM 260/2010; il dato 2008 indicava l'utilizzo in permanenza dell'ipoclorito per la disinfezione. (♣)

6. VALUTAZIONE DI APPORTI INQUINANTI DA PARTE DELLE ACQUE INTERNE E DI CARICHI DIRETTI AI CORPI IDRICI DI TRANSIZIONE E ALLE ACQUE MARINO-COSTIERE

6.1 I FLUSSI IDRICI VERSO GLI AMBITI DI TRANSIZIONE

Le acque di transizione sono caratterizzate dall'avere sia apporti idrici dalle acque interne, sia apporti idrici dalle acque marino-costiere; queste ultime, se da un lato ne aumentano la salinità, dall'altro determinano solitamente un processo di diluizione degli inquinanti presenti.

Un'indagine di dettaglio in merito agli aspetti morfologici, idrologici e idraulici inerenti le acque di transizione, era già stata condotta preliminarmente all'implementazione della Direttiva 2000/60/CE a livello regionale (vedi Allegato 1, DGR 350/2010); in essa si era proceduto alla localizzazione planimetrica dei principali ingressi di acqua dolce, nonché ad una loro quantificazione, anche a livello stagionale.

Per le diverse acque di transizione considerate, in Tabella 6.1 si evidenziano: i corpi idrici tributari; la stima dei volumi medi complessivi in transito/immessi, qualora valutabili con buona approssimazione; le modalità di immissione.

Tabella 6.1 Acque dolci, relative modalità di apporto, aste tributarie e quantitativi

Pro_ vin_ cia	Denominazione	Aste di provenienza delle acque dolci	Modalità di apporto	Corpo idrico di provenienza dell'acqua dolce	Volume estivo in ingresso da acque dolci (Mm³/anno)	Volume inver_ nale in ingresso da acque dolci (Mm³/anno)	
FE	Tratto finale del Po di Goro	Po di Goro	Flusso in transito	56450 IR	Intero apporto (10 % del Po)	Intero apporto (10 % del Po)	
	Sacca di Goro	Po di Goro	4 chiuse da Gorino al Faro	56450 IR	25	35	
		Canal Bianco	Immissione (Idrovora Romanina) [*]	020000000000 2 ER	Intero apporto	Intero apporto	
		Po di Volano	Immissione	040000000000 4 ER	Intero apporto – V1 – V2 - V3	Intero apporto – V1 – V2 - V3	
		Coll. Vallazza	Immissione con idrovora		Intero apporto	Intero apporto	
		Collettore Giralda	Immissione con idrovora	030000000000 1 ER	Intero apporto – V4	Intero apporto – V4	
	Valli Nuova e Cantone (Valli Bertuzzi)	Po di Volano (V2)	Chiaviche	040000000000 4 ER	6.7	3.8	
	Lago delle Nazioni	Po di Volano attrav. C.le Lago delle Nazioni (V3)	Chiavica-sifone sul Volano	040000000000 4 ER	0.1	0.4	
	Valle Molino	Collettore Valle Isola	Chiuse con alta marea	051600000000 1 ER	Assunto orient. pari a ½ apporto Coll. V.Isola	Assunto orient. pari a ½ apporto Coll. V.Isola	
	Valle Fattibello	C.le Navigabile	Immissione [**]	050000000000 4 ER	Intero apporto	Intero apporto	
		Canale Circondariale Fosse	Immissione	051700000000 2 ER	Intero apporto – V5 – V6	Intero apporto – V5 – V6	
	Valle Campo	Canale Circondariale Fosse (V5)	Chiaviche	051700000000 2 ER	2.1	3.0	
	Valle Lido Magnavacca	Canale Circondariale Fosse (V6)	Sifoni	051700000000 2 ER	5.2	7.5	
		Reno	Sifoni	060000000000 21 ER	5.3	7.5	
	Valle Fossa di Porto	Reno	Sifoni	060000000000 21 ER	4.9	7.0	
	Sacca di Bellocchio	Reno - parte centro- meridionale	Chiusa + pompa	060000000000 21 ER	0.1	0.8	
RA		C.le Navigabile- C.le delle Vene - parte nord	Chiuse	050000000000 4 ER	Non valutabile	Non valutabile	
	Pialassa Baiona	Lamone attraverso C.le Taglio e C.le Fossatone	Chiavica	080000000000 12 ER	-	5.5	
		Scolo Via Cerba	Immissione con idrovora	090400000000 3 ER	Intero apporto	Intero apporto	
		C.li Canala e Via Cupa	Immissione [***]	090301000000 2 ER	Intero apporto	Intero apporto	
	Pialassa del Piombone	Canale Principale	Immissione con idrovora	Asta secondaria non codificata	Intero apporto	Intero apporto	

^(*) Una considerevole parte dell'acqua viene deviata presso Ponte Coccanile verso le Acque Alte Ferraresi, entro il bacino del Po di Volano.

6.2 STIMA DEI CARICHI IN INGRESSO ALLE ACQUE DI TRANSIZIONE

Stimati i volumi immessi dalle aste idrografiche nelle acque di transizione, dal prodotto tra questi e i carichi medi di inquinanti in transito sulle medesime aste, si perviene ad una quantificazione, sia pure approssimativa, dei principali carichi inquinanti in ingresso ai corpi idrici di transizione.

Oltre ai carichi così stimati, deve essere aggiunto il carico diffuso e puntuale proveniente da aste minori, non individuate come corpi idrici.

^(**) Di cui l'intero volume di provenienza dal Canale Circondariale Bando Valle Lepri.

^(***) Comprendente circa 2.7 m³/s relativi a scarichi, dei quali 2.3 dal Polo chimico di RA (raffreddamento centrale ENIPower) e 0.55 da depuratori di Russi e Ravenna.

I carichi apportati alle valli chiuse rimangono all'interno delle stesse per lunghi periodi e ovviamente qui subiscono processi di biodegradazione, volatilizzazione, sedimentazione, adsorbimento, ingresso nel ciclo biologico etc., in funzione delle caratteristiche e della specificità del corpo idrico.

Gli apporti alle valli aperte sono invece principalmente e progressivamente trasferiti verso mare in concomitanza con i deflussi di marea, cioè in modo "pulsante".

I carichi stimati in ingresso alle valli di transizione sono forniti in Tabella 6.2.

Tabella 6.2 Stime carichi annui in ingresso per gli ambiti di transizione

Acque di transizione	Area som_ mersa (km²)	Apporto	Azoto	Fosforo	Cadmio	Cromo	Nichel	Piombo	Zinco	Totale fito_ farmaci
AMBIENTI CHIUSI			(t/anno)	(t/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)
Valli Nuova e Cantone (Valli Bertuzzi)	19.7	Permanente	69	2.6	0.2	2.5	184	2.3	88	6
Lago delle Nazioni	0.9	Permanente	4	0.1	0.0	0.1	9	0.1	4	0
Valle Campo	13.3	Permanente	45	2.4	0.0	0.8	29	0.3	13	1
Valle Lido Magnavacca	65.0	Permanente	163	8.2	0.6	5.0	78	5.4	216	4
Valle Fossa di Porto	29.5	Permanente	38	1.5	0.4	2.8	21	3.8	150	1
Sacca di Bellocchio	2.1	Permanente	3	0.1	0.0	0.2	2	0.3	11	0
AMBIENTI APERTI			(t/anno)	(t/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)	(kg/anno)
Tratto finale del Po di Goro	0.8	In transito	17.286	881	0.2	304	15.175	387	19.379	765
Sacca di Goro	26.0	Flussi in-out	1.387	55	3.5	45	2.582	38	1.406	85
Valle Molino	2.1	Flussi in-out	41	5	1.4	13	55	8	273	2
Valle Fattibello	6.1	In transito	2.626	169	17.4	239	2.727	192	5.804	158
Pialassa Baiona	12.6	Flussi in-out	261	21	6.3	110	210	68	941	27
Pialassa Piombone	3.1	Flussi in-out	32	3	0.4	5	13	4	110	2

6.3 STIMA DEI CARICHI IMMESSI NEI CORPI IDRICI MARINO-COSTIERI

La fascia costiera della regione Emilia-Romagna è suddivisa in 2 corpi idrici marino-costieri:

- CD1 dal Po di Goro a Ravenna (dighe foranee del porto canale), interessato a centro-nord da 21 km di costa appartenente al Distretto del F. Po e a sud da 15 km entro il Distretto dell'Appennino Settentrionale;
- CD2 da Ravenna a Cattolica (immissione a mare del T. Tavollo), interamente nel Distretto dell'Appennino Settentrionale, per 72 km di costa.

Per entrambi i corpi idrici sono stimati gli apporti dei nutrienti, dei 5 metalli simulati e dei 15 fitofarmaci maggiormente ritrovati in regione, provenienti dai corsi d'acqua con foce a mare, utilizzando come termine di riferimento il valore di carico ottenuto nell'ultimo corpo idrico di ciascuna asta principale. Sono quindi stati valutati anche i carichi apportati dal reticolo minore e dalle acque di transizione con immissione a mare, differenziati per le diverse fonti di generazione. Tutti i dati sono rappresentati in Tabella 6.3.

I carichi che derivano da Po sono stati stimati utilizzando i dati misurati (medie dei valori) nelle stazioni di Pontelagoscuro di Ferrara (01000700) e Serravalle di Berra (01000900).

Si è assunto che il Po di Goro (il ramo più meridionale del Delta del Po, sul confine tra Emilia e Veneto) trasporti annualmente il 10% del carico da Po, analogamente a quanto accade per le portate idriche.

La Tabella 6.4 presenta i corrispondenti apporti emiliani al F. Po.

Nella Tabella 6.5 di sintesi, sono mostrati i carichi apportati ai 2 corpi idrici marino-costieri CD1 e CD2 e il raffronto con il contributo in Adriatico del F. Po.

Gli apporti dal Po di Goro sono attribuiti interamente al corpo idrico marino-costiero CD1, dato che le correnti prevalenti lungo costa sono orientate verso sud.

Il contributo emiliano al F. Po, in termini di carichi, risulta del 5-6 % per i nutrienti e per il complesso dei fitofarmaci, mentre varia attorno al 10-20 % per i metalli.

I soli contributi regionali al CD1 (apporti in Po e diretti a mare, escluso il Po di Goro), provenienti principalmente da Piacenza, Parma, Reggio Emilia, Modena e Ferrara, sono dell'ordine del doppio di quelli scaricati in CD2, che drena la maggior parte della provincia di Bologna e i territori di Ravenna, Forlì-Cesena e Rimini.

Tabella 6.3 Stime apporti annui dei carichi alle acque marino-costiere dalle aste principali e dagli areali costieri minori

Corpo idrico	Distretto	Corso d'acqua	Azoto (t/anno)	Fosforo (t/anno)	Cd (kg/anno)	Cr (kg/anno)	Ni (kg/anno)	Pb (kg/anno)	Zn (kg/anno)	Totale metalli (kg/anno)	Totale 15 fitofarm. (kg/anno)
(Veneto)		Po al netto del Po di Goro	167.660	7.917	<<	2.715	136.535	3.470	174.275	316.995	5.974
		Po di Goro (≈ 10 % del Po)	17.281	880	0	302	15.171	386	19.364	35.222	664
	Fiume Po	Canal Bianco	17	1	0	0	141	0	17	159	2
		Po di Volano	1.206	42	3	34	2.435	30	1.161	3.663	77
CD1		Burana C.le Navigabile	2.412	157	17	236	2.591	190	5.745	8.780	151
		Apporti minori o da transizione	92	8	1	5	24	7	80	117	
	Appenn.	F. Reno	3.004	140	31	211	1.565	286	11.367	13.460	84
	Settentri_	C.le Destra Reno	678	48	8	119	513	100	3.556	4.297	74
	onale	F. Lamone	310	11	2	14	95	17	410	539	3
		C.le Candiano	401	37	8	160	464	90	2.230	2.952	41
		Fiumi Uniti	885	44	8	74	456	162	3.341	4.041	6
		T. Bevano	356	23	2	24	147	21	1.214	1.409	27
		F. Savio	401	18	1	9	194	52	1.147	1.404	2
		C.le di Allacci. Fossatone	128	8	2	24	95	24	878	1.022	2
	Appenn.	F. Rubicone	287	18	3	33	164	33	1.157	1.391	1
CD2	Settentri_	F. Uso	160	8	1	14	62	14	442	533	1
	onale	F. Marecchia	540	32	8	90	317	85	1.300	1.801	1
		Rio Marano	118	5	2	38	66	23	315	445	0
		Rio Melo	58	3	0	1	15	1	37	54	0
		F. Conca	174	7	1	5	49	5	248	308	0
		T. Ventena	119	6	2	24	67	23	319	435	0
		T. Tavollo	112	7	0	4	45	5	766	820	0
		Apporti minori o da transizione	188	27	5	58	232	54	2.212	2.561	
CD1	TOT		24.999	1.287	62	920	22.538	1.017	41.712	66.249	1.055
CD2	TOT		3.924	243	45	560	2.372	593	15.606	19.176	83

Tabella 6.4 Stime apporti annui dei carichi dalle aste principali emiliane e dagli areali minori adiacenti l'asta al F. Po

Percorso sul Po (km) [*]	Corso d'acqua	Azoto (t/anno)	Fosforo (t/anno)	Cd (kg/anno)	Cr (kg/anno)	Ni (kg/anno)	Pb kg/anno)	Zn (kg/anno)	Totale metalli (kg/anno)	Totale 15 fitofarm. (kg/anno)
293	R. Bardonezza	87	3	0	1	29	0	44	74	1
290	R. Lora - Carogna	38	3	0	2	11	1	80	94	3
289	R. Carona – Boriacco	77	5	1	11	38	9	316	374	5
281	R. Cornaiola	63	6	0	8	29	5	209	251	11
280	T. Tidone	247	14	0	5	50	3	129	187	7
279	T. Loggia	47	4	0	1	13	2	81	97	7
250	F. Trebbia	625	26	2	22	362	20	863	1.269	24
230	T. Nure	210	16	2	65	293	16	1.021	1.397	19
220	T. Chiavenna	493	26	1	18	138	14	1.017	1.189	46
186	Cavo Fontana	159	13	1	15	60	18	542	636	24
185	T. Arda	489	27	1	24	130	18	1.563	1.736	47
165	F. Taro	1.297	87	10	168	880	105	4.054	5.218	27
154	Cavo Sissa-Abate	105	9	0	4	41	3	215	264	3
140	T. Parma	759	60	15	59	729	41	6.434	7.278	12
130	T. Enza	609	46	4	52	291	47	3.427	3.821	15
120	T. Crostolo	562	60	14	145	573	151	7.045	7.928	8
70	F. Secchia	1.938	110	21	169	936	165	11.675	12.966	49
39	Coll. Principale (Mantovane Reggiane) porz. regionale	173	19	3	48	324	33	1.819	2.228	11
20	F. Panaro	1.599	99	32	97	1347	145	12.020	13.640	66
145	Apporti minori o scarichi diretti	154	19	7	72	217	67	1.633	1.996	
	TOT	9.731	651	115	986	6.492	862	54.188	62.641	386
[*]	Percorsi valutati rispetto a Por	ntelagoscur	o							

Tabella 6.5 Stime apporti annui dei carichi ai 2 corpi idrici marino-costieri e contributi al F. Po dalle aste emiliane

		Azoto totale (t/anno)	Fosforo totale (t/anno)	Cd (kg/anno)	Cr (kg/anno)	Ni (kg/anno)	Pb (kg/anno)	Zn (kg/anno)	Totale metalli (kg/anno)	Totale 15 fitofar_ maci (kg/anno)
	Intero apporto del F. Po	172.801	8.797	(**)	(***) 3.016	151.706	(***) 3.856	193.639	352.217	6.638
F. Po	Contributo affluenti emiliani del Po (*)	7.824	484	92	733	4.954	667	43.051	49.498	328
	% emiliana rispetto al F. Po	5%	6%		24%	3%	17%	22%	14%	5%
CD1	Apporti dal Po di Goro compreso al F. Reno escluso	24.998	1.286	62	920	22.536	1.016	41.701	66.236	1.055
	Apporti emiliani al Po e apporti diretti ferraresi a CD1	13.458	859	136	1.260	11.683	1.089	61.191	75.359	616
CD2	Apporti da C.le Candiano a T. Tavollo	7.916	443	86	904	4.546	997	30.940	37.472	244

^(*) Sono considerati anche degli opportuni abbattimenti chilometrici sui carichi in relazione ai percorsi dalla immissione in Po alla sezione di Pontelagoscuro, variabili a seconda del parametro considerato tra l'1 e il 2 % per km percorso

^(**) In relazione all'elevato grado di diluizione la concentrazione non è rilevabile

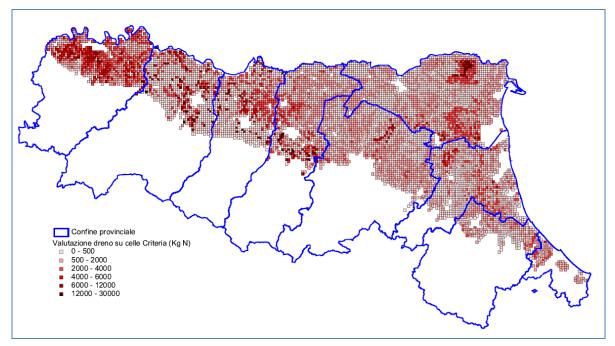
^(***) Quantitativi fortemente variabili, il dato 2010-2013 è di circa 14.000 kg/anno di Cr e non rilevabile per il Pb

7. I CARICHI INFILTRATI IN FALDA DA SUOLO E DA CORPO IDRICO SUPERFICIALE

Per la valutazione delle forme azotate infiltrate in falda si parte da una analisi dei dati di cui al precedente Cap. 4, ed in particolare dai dati di bilancio idrico e di nutrienti (drenaggio dell'acqua e lisciviazione profonda dei nutrienti). L'analisi è stata condotta a livello di corpo idrico sotterraneo, con particolare riferimento a quelli che risultano direttamente impattati dalle attività presenti in superficie. Ai carichi relativi ai flussi dal suolo sono state aggiunte le stime di apporto derivanti dalla ricarica che i corpi idrici superficiali operano nei confronti delle acque sotterranee.

L'analisi è stata completata con il confronto con i dati di monitoraggio, per una verifica di coerenza tra il carico azotato stimato in ingresso alle acque sotterranee e le concentrazioni di azoto rilevate nei pozzi della rete di monitoraggio.

7.1 CARICHI DI NUTRIENTI INFILTRATI IN FALDA DAL SUOLO


Per la valutazione dei carichi di nutrienti infiltrati in falda dal sistema suolo/coltura, si è fatto riferimento alla modellistica del bilancio di acqua ed azoto effettuata con CRITERIA. Sono risultate di interesse le seguenti voci di bilancio:

- Millimetri (mm) di acqua drenata alla falda;
- NO₃ e NH₄ lisciviati (kgN).

Queste voci hanno permesso di quantificare i possibili ingressi di acqua ed azoto all'interno del sistema delle acque sotterranee direttamente collegato o posto più in profondità.

L'analisi dei carichi vettoriati dal sistema suolo/coltura alle falde sotterranee è stata condotta per valori medi annui, relativamente al periodo 2005-2012. Le forme ammoniacale e nitrica, che concorrono alla lisciviazione profonda, sono state aggregate in termini di Azoto. I risultati ottenuti sulle celle di estensione paria a 1 km² utilizzate da CRITERIA per la simulazione sono riportati in Figura 7.1.

Figura 7.1 Carico di Azoto verso le acque sotterranee del territorio di pianura (kg N): distribuzione di valori sulle celle di simulazione di CRITERIA (1 km²).

La Figura 7.2 e la successiva 7.3 si riportano le delimitazioni cartografiche dei corpi idrici sotterranei che si trovano a più diretto contatto col sistema suolo/coltura e che quindi rappresentano i primi corpi idrici sotterranei a risentire dell'impatto delle attività antropiche. La prima figura descrive i corpi idrici

sotterranei superiori, tra cui le conoidi libere (perimetrazioni in azzurro) sono quelle le cui acque possono venire a diretto contatto col sistema antropico/naturale più superficiale. I corpi idrici posti subito a valle risultano essere confinati e quindi il contatto con la superficie non risulta diretto. Al di sopra di questi, a loro protezione, si trova infatti l'acquifero freatico di pianura, cartografato nella Figura 7.3.

Le porzioni libere delle conoidi alluvionali appenniniche e l'acquifero freatico di pianura sono i corpi idrici sotterranei direttamente impattati dal carico di azoto di provenienza superficiale. In Tabella 7.1 e Tabella 7.2 sono riportate le stime dei carichi per ciascuno di questi corpi idrici.

Per l'intero sistema delle conoidi alluvionali libere viene stimato un ingresso medio di azoto pari a circa 2.200 ton N/anno, corrispondenti ad un carico unitario pari a 17 kg/ha. Per l'acquifero freatico di pianura invece viene stimato un ingresso di circa 7.600 ton N/anno pari a 10 kg/ha.

Per capire cosa comporta, in termini di variazione di concentrazione di una data sostanza in acqua, un apporto ad esempio di 23 kg N/ha/anno verso l'acquifero, con un dreno medio di 200 mm di acqua $(2.000 \text{ m}^3/\text{ha/anno})$, porta a $(23 \text{ kg N/ha})/(2000 \text{ m}^3/\text{ha}) = 11.5 \text{ mg N/l}$, che equivalgono a poco più di 50 mg/l di NO_3 (limite normativo per le acque potabili).

Gli apporti di dreno dagli alvei appenninici verso i corpi idrici sotterranei, determinano un'azione di rilevante diluizione delle concentrazioni di azoto nelle falde verso cui avviene il principale flusso di queste acque (la concentrazione media di azoto nelle acque superficiali è dell'ordine dei 2 mg/l di N, che equivalgono a 9 mg/l di NO₃).

Figura 7.2 Corpi idrici sotterranei di montagna, di pianura liberi e confinati superiori (acquiferi A1 e A2)

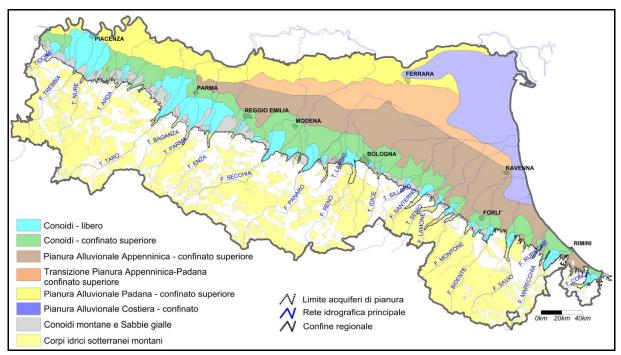


Figura 7.3 Corpi idrici sotterranei freatici di pianura

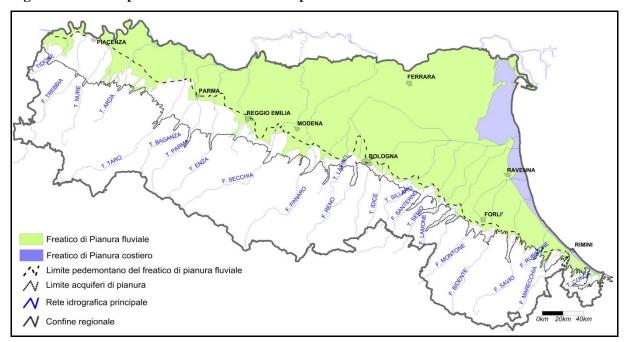


Tabella 7.1 Carichi di azoto in ingresso ai corpi idrici di conoide liberi (ton N/anno)

Corpo Idrico	Estensione corpo idrico	Superficie agricola sul corpo idrico	Num. celle CRITERIA	Dreno totale	Dreno medio
	km^2	km ²	numero	ton N	kgN/ha
Conoidi montane e Sabbie gialle	604	453	309	255	8
Conoide Tidone - libero	25	21	20	65	32
Conoide Luretta - libero	16	15	18	41	23
Conoide Trebbia - libero	167	117	117	420	36
Conoide Nure - libero	138	104	104	348	33
Conoide Arda - libero	22	16	17	57	34
Conoide Stirone-Parola - libero	14	12	15	3	2
Conoide Taro - libero	174	123	123	207	17
Conoide Parma-Baganza - libero	157	117	117	237	20
Conoide Enza - libero	111	82	83	61	7
Conoide Crostolo - libero	11	7	7	15	21
Conoide Tresinaro - libero	8	3	3	0	2
Conoide Secchia - libero	86	43	43	117	27
Conoide Panaro - libero	62	39	34	131	39
Conoide Tiepido - libero	23	13	13	57	44
Conoide Samoggia - libero	10	7	6	7	11
Conoide Reno-Lavino - libero	35	13	13	17	13
Conoide Zena - libero	2	1	1	1	14
Conoide Idice - libero	5	3	4	7	17
Conoide Sillaro - libero	8	6	5	5	9
Conoide Santerno - libero	26	10	10	12	12
Conoide Senio - libero	11	8	8	5	6
Conoide Lamone - libero	19	13	13	5	4
Conoide Montone - libero	8	7	7	9	13
Conoide Rabbi - libero	8	6	6	11	18
Conoide Ronco - libero	19	14	14	10	7
Conoide Savio - libero	22	13	13	5	4
Conoide Marecchia - libero	40	23	22	42	19
Conoide Conca - libero	22	14	13	12	9
Totale acquiferi liberi di conoide	1.854	1.303	1.158	2.163	17

Tabella 7.2 Carichi di azoto in ingresso all'acquifero freatico di pianura (ton N/anno)

Matrice acquifero freatico di pianura	Superficie acquifero	Numero celle CRITERIA	Copertura CRITERIA	Dreno totale	Dreno medio
	(km ²)	numero	(suoli agricoli)	(ton N)	(kg N/ha)
Fine	5 282	4 423	84%	3 416	7.7
Grossolana	3 809	3 102	81%	4 166	13.4
Totale acquifero freatico di pianura	9.091	7.525	83%	7 582	10.1

7.2 CARICHI DI NUTRIENTI INFILTRATI IN FALDA DA CIS

Per stimare l'azoto infiltrato in falda in conseguenza del contributo alla ricarica naturale dei corpi idrici sotterranei dovuto ai principali corsi d'acqua appenninici, si sono valutati:

- 1. la ricarica operata dal fiume, ovvero il volume di acqua infiltrato in falda dal fondo dell'alveo;
- 2. la concentrazione di Azoto (N tot) mediamente misurata in ciascun corso d'acqua, nel tratto in cui questo alimenta le acque sotterranee.

Per quanto riguarda il primo punto si è partiti dalle elaborazioni effettuate nell'ambito dell'aggiornamento del modello di flusso delle acque sotterranee della Regione Emilia-Romagna.

Nella Tabella 7.3 sono riportati i valori stimati delle portate medie di alimentazione delle falde dovute al contributo dei corsi d'acqua, per il periodo 2002-2011.

Per quanto riguarda la stima della concentrazione di azoto presente nelle acque dei diversi tratti fluviali, sono stati presi in considerazione i dati relativi alle stazioni di monitoraggio dei corpi idrici superficiali più vicine alle zone di ricarica fluviale.

La stima delle concentrazioni medie annue di azoto (N tot), attribuite ai diversi tratti dei corsi d'acqua considerati e relative al periodo 2005-2011, sono riportate nella Tabella 7.3.

Combinando le stime dei volumi di acqua con le concentrazioni di Azoto si ottengono i quantitativi medi annui di N relativi al periodo 2005-2011, in ingresso dai fiumi verso le falde libere di conoide (ultima colonna di Tabella 7.3).

Tabella 7.3 Media 2005-2011 dei volumi di ricarica da fiume, delle concentrazioni di azoto (N tot) per le acque dei tratti fluviali che insistono sulle zone di ricarica e dei carichi di azoto infiltrati in falda

Asta	Portate medie di ricarica (m³/s)	Concentrazioni medie di Azoto - N tot (mg/l)	Carichi di Azoto - N tot infiltrati in falda (t/anno)
Tidone	0.25	2.95	23.8
Trebbia	1.12	0.69	24.9
Nure	0.48	0.88	14.2
Arda	0.24	2.12	22.6
Taro	1.45	1.01	48.1
Stirone	0.17	1.83	12.5
Parma	0.72	2.18	50.9
Baganza	0.21	2.07	14.2
Enza	0.48	1.52	26.0
Crostolo	0.24	1.54	12.4
Secchia	1.04	1.86	70.0
Tresinaro	0.16	3.12	32.0
Panaro	0.56	0.70	12.5
Tiepido	0.15	3.23	15.7
Reno	0.24	1.24	8.8
Samoggia	0.24	2.00	18.1
Lavino	0.04	2.25	3.1
Idice	0.32	1.90	17.6
Savena	0.08	1.64	3.6
Sillaro	0.18	1.23	7.8
Santerno	0.33	2.06	21.0
Senio	0.20	2.55	15.2
Lamone	0.39	3.14	38.6
Montone	0.39	1.66	16.3
Rabbi	0.05	2.47	3.5
Ronco	0.39	4.09	49.3
Savio	0.46	2.02	29.7
Marecchia	0.52	1.35	22.4
Conca	0.13	2.21	10.2
Totale o media	11.2	1.98	645

7.3 CONFRONTO DEL CARICO DI AZOTO IN INGRESSO ALLE ACQUE SOTTERRANEE CON I DATI DEL MONITORAGGIO

7.3.1 Confronto per le conoidi alluvionali appenniniche

I carichi di azoto in ingresso alle acque sotterranee, rispettivamente come contributo dal suolo e dalla ricarica fluviale, sono stati confrontati con i dati del monitoraggio per un'analisi di coerenza, soprattutto nelle situazioni in cui si rileva un aumento della concentrazione di nitrati.

Il confronto è stato effettuato considerando il bilancio descritto dalla seguente equazione per i corpi idrici di conoide:

Ingresso nitrati (suolo + fiume) = Aumento medio massa residente nitrati + Uscite nitrati con i prelievi

1. Il calcolo dei *nitrati in ingresso dal suolo* fa riferimento alle sole aree di alimentazione della conoide, corrispondenti alle porzioni libere di questa.

I *nitrati in ingresso con i fiumi* sono stati calcolati secondo la metodologia precedentemente descritta.

- 2. Per il calcolo della *variazione* (*aumento/diminuzione*) *media della massa di nitrati* residenti all'interno dei corpi idrici è stato considerato il monitoraggio della rete regionale relativo agli anni 2005-2012. Le variazioni medie annue delle concentrazioni di nitrati riferibili ai corpi idrici sotterranei di conoide (conoide libera, confinata superiore ed inferiore) sono state calcolate come media delle variazioni dei singoli punti di misura.

 La variazione media annua di concentrazione (aumento/diminuzione) è stata quindi tradotta in variazione di massa residente di nitrati, attraverso la stima dei volumi di acqua in gioco all'interno dei singoli corpi idrici sotterranei. Tale valore è stato calcolato sia per le porzioni libere delle conoidi sia per le porzioni confinate superiori ed inferiori, che risultano essere idraulicamente collegate alle prime.
- 3. I *nitrati in uscita con i prelievi* sono stati calcolati, per singolo corpo idrico, moltiplicando i volumi di acqua in uscita per effetto dei prelievi per la concentrazione media dei nitrati. Anche in questo caso sono state calcolate e messe a bilancio le masse in uscita dai corpi idrici di conoide libera, confinata superiore ed inferiore.

L'equazione del bilancio è stata applicata calcolando separatamente le voci appena descritte per ogni corpo idrico sotterraneo e risolvendola rispetto alla voce assunta ad incognita (l'apporto dai suoli). Tale valore rappresenta il quantitativo di azoto che risulterebbe necessario in entrata del corpo idrico per soddisfarne il bilancio. Il risultato del "bilancio semplificato" dei corpi idrici liberi, confinati superiori ed inferiori di ciascuna conoide o insieme di conoidi, è stato confrontato con l'ingresso netto di azoto nella sola porzione libera della conoide, calcolato dalle simulazioni di CRITERIA. In tal modo sono stati resi ininfluenti, per il calcolo del bilancio, i termini di scambio "interni" di acqua e azoto tra acquiferi liberi ed acquiferi confinati superiori ed inferiori, nell'ipotesi di poter trascurare i movimenti di azoto dalle conoidi confinate verso gli acquiferi confinati di pianura.

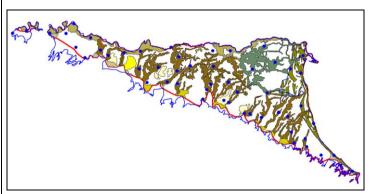
Nella Tabella 7.4 i valori riportati per i singoli corpi idrici sotterranei sono stati aggregati per effettuare le prime considerazioni sul bilancio semplificato risultante e, di conseguenza, sulla possibile coerenza dei dati derivanti dalle elaborazioni di CRITERIA. Quello che è emerso dalla lettura dei dati può essere sintetizzato nei 2 punti seguenti:

- 1. per le conoidi emiliane dal Tidone ad ovest fino al Reno ad Est il bilancio semplificato fornisce per tutti i raggruppamenti di conoidi analizzati un valore positivo espresso in tonnellate di NO₃. Tale valore esprime il carico di NO₃ in ingresso nelle porzioni libere delle conoidi che ne soddisfa il bilancio complessivo, comprensivo quest'ultimo delle variazioni che si verificano nelle porzioni confinate superiori ed inferiori delle conoidi costituenti il raggruppamento. Tale valore può essere confrontato con la massa di NO₃ stimata in ingresso dalle simulazioni di CRITERIA in modo tale da poterne esprimere una valutazione di coerenza generale. L'accordo dei dati risulta abbastanza buono in quasi tutti i raggruppamenti di conoidi, con il carico derivate dal modello CRITERIA che corrisponde a circa il 90% del carico complessivo derivante dal calcolo del bilancio. Costituisce una eccezione il raggruppamento delle conoidi modenesi (Secchia, Tiepido e Panaro) dove la precedente proporzione risulta coperta solamente al 60%, evidenziando una carenza di carico in ingresso alle conoidi modenesi, per la soddisfazione del bilancio, pari a circa 410 ton di N;
- 2. per le rimanenti conoidi, la situazione risulta completamente diversa, al momento non è possibile fornire concrete indicazioni sulla coerenza dei quantitativi di Nitrati in ingresso nelle conoidi di questa parte del territorio regionale, così come calcolati da CRITERIA, con i dati della rete regionale di monitoraggio. Il bilancio semplificato presenta infatti un saldo, per tutte le conoidi comprese tra il Savena ed il Conca, con segno negativo pari a circa 680 ton N/anno, ad indicare una necessità di uscita di azoto dal sistema e non una necessità di ingresso, come evidenziato per le conoidi emiliane. Tale circostanza meriterebbe ulteriori approfondimenti per valutarne le relative cause, che possono essere imputabili alle diverse voci che concorrono al bilancio.

Tabella 7.4 Calcolo del bilancio annuo semplificato, dati per raggruppamenti di corpi idrici

Raggruppamento conoidi	Volume acqua	Prelievo da pozzo	Massa residente nitrati	disp	umero pozzi onibili 'analis	i per		'enden media revale	1	Varia_ zione massa residente	Massa di nitrati in uscita con i prelievi	Ingresso di nitrati con il fiume	Bilancio sempli_ ficato	Ingressi di NO ₃ da Criteria	Giudizio sintetico
	Mm ³	m ³ *1000	(t NO ₃)	LIB	SUP	INF	LIB	SUP	INF	(t NO ₃)	(t NO ₃)	(t NO ₃)	(t NO ₃)	(t NO ₃)	
Tidone-Luretta-Trebbia-Nure	10.339	1.527	246.573	24	4	4	+	+	+	4.590	1.250	280	5.560	4.960	Buona coerenza generale
Arda-Chiavenna	1.120	0	23.177	1	6	0	+	+		690	330	90	930	750	del dato di carico di azoto
Stirone-Taro-Parma-Baganza-Enza	24.585	218	563.149	35	11	5	-	+/-	+	-450	4.370	670	3.250	3.100	in ingresso alle acque sotterranee delle conoidi
Crostolo-Tresinaro	2.749	412	65.286	1	8	2	-	+	-	210	370	200	380	300	con i dati del monitoraggio
Secchia-Tiepido-Panaro	19.483	391	551.207	20	20	8	-	+	+	1.500	3.230	440	4.290	2.500	rielaborati in termini di bilancio semplificato di
Samoggia-Ghironda-Reno-Lavino	9.465	841	61.637	7	3	7	-	-	-	-50	460	130	280	215	azoto
Aposa-Savena-Zena-Idice- Quaderna	6.270	1.365	48.822	3	7	1	-	-	-	-470	30	90	-530	50	Il calcolo del bilancio non consente di effettuare una
Sillaro-Sellustra-Santerno	4.810	2.391	36.874	2	2	3	-	+/-	-	-230	120	130	-240	180	valutazione di coerenza
Senio-Lamone	983	2.978	21.548	3	2	1	-	+		-10	90	240	-160	120	generale del dato di carico
Montone-Rabbi-Ronco	1.321	105	53.481	1	3	0	+	-		-750	50	300	-1000	210	di azoto in ingresso alle acque sotterranee delle
Savio	2.080	0	20.240	2	6	1	-	+	-	-280	90	130	-320	30	conoidi con i dati del
Pisciatello-Rubicone-Uso	175	1.069	1.364			•		•		-97	2	0	-95	0	monitoraggio rielaborati in
Marecchia	3.115	0	72.058	3	13	0	-	-		-960	450	100	-610	220	termini di bilancio
Conca	47	734	1.461	2	4	0	-	+		-35	80	50	-5	60	semplificato di azoto
Totale	86.542	12.031	1.766.877	104	89	32				3.755	10.920	2.850	11.825	12.695	

7.3.2 Confronto per l'acquifero freatico di pianura


Per l'acquifero freatico di pianura, una verifica di coerenza generale del dato di carico infiltrato in falda e quantificato in Tabella 7.2, risulta incerta per una serie di motivi, tra i quali i più rilevanti sono:

- i punti di misura della rete dell'acquifero freatico di pianura sono 52, a copertura di un corpo idrico di estensione pari circa 9.000 km². Il dato risulta quindi estremamente rarefatto nello spazio, a fronte di una conosciuta e confermata diversa risposta dell'acquifero da luogo (sedimenti prevalentemente fini o sedimenti prevalentemente grossolani) rispetto a sollecitazioni/impatti per lo più di carattere locale;
- sono disponibili solo pochi anni di misurazioni, dal 2009 al 2012, per cui l'intervallo temporale risulta alquanto ristretto per una valutazione di medio periodo quale quella necessaria all'analisi;
- la conoscenza dei rapporti falda-fiume è nota solo localmente e non è sufficiente per quantificare possibili scambi.

Premesso ciò, un tentativo di verifica sommaria dei carichi di Azoto in uscita dal primo strato di suolo, secondo le modellazioni di CRITERIA, e quindi in ingresso all'acquifero freatico di pianura, è stata condotta come di seguito descritto:

- sono stati considerati i 40 pozzi appartenenti alle sole litologie grossolane riportate in Figura 7.4;
- i valori di concentrazione di nitrati sono stati mediati sui 40 pozzi da cui vengono prelevati i campioni e ne è stata valutata una variazione media annua pari a 2 mg/l anno;
- la variazione media annua di concentrazione è stata applicata all'acqua presente all'interno delle porzioni grossolane dell'acquifero freatico di pianura (circa 3.900 km²), ipotizzandone uno spessore pari a 8 m ed una porosità del 30%, ottenendo così un valore di circa 4.200 ton N/ anno (Tabella 7.5), confrontabile positivamente col dato di CRITERIA riportato nella precedente Tabella 7.2.

Figura 7.4 Acquifero freatico di pianura, depositi grossolani e concentrazione media annua di nitrati sui pozzi della rete regionale di monitoraggio

LEGENDA (litologie grossolane):
Ghiaie e sabbie - Depositi di conoide e di terrazzo
Sabbie da medie a fini - Depositi di canale distributore e di argine
Sabbie medie e fini - Depositi di canale e argine prossimale
Sabbie medie e fini - Depositi di cordone litorale e dune eoliche
Sabbie medie e fini, limi e argille limose - Depositi di canale e argine indifferenziati
Sabbie medie e grossolane - Depositi di piana a meandri
Sabbie, limi sabbiosi e limi - Depositi di conoide e di terrazzo
Sabbie, limi sabbiosi e limi - Depositi di conoide e di terrazzo

Tabella 7.5 Stima della variazione media annua della massa residente di nitrati all'interno delle porzioni grossolane dell'acquifero freatico di pianura

Dato	2009	2010	2011	2012	Variazione media annua	Descrizione del dato
Concentrazione media nitrati (mg/l)	21.0	31.6	31.1	28.0	2.0	Dati medi su 40 pozzi appartenenti al freatico grossolano (mg/l anno)
Tonnellate di NO3	191.665	289.271	284.315	255.707	18.717	Aumento medio annuo (ton NO ₃) nell'acquifero freatico grossolano
Tonnellate di N	43.265	65.298	64.180	57.722	4.225	Aumento medio annuo (ton N) nell'acquifero freatico grossolano

7.4 FITOFARMACI DISTRIBUITI AI SUOLI E APPORTATI IN FALDA

Con riferimento ai singoli *fitofarmaci* apportati ai suoli e rintracciati in misura significativa nelle acque sotterranee, la procedura di elaborazione ha utilizzato gli stessi criteri considerati per le acque superficiali, descritti nel Par. 3.2.

L'analisi è stata condotta sui corpi idrici sotterranei che si trovano a più diretto contatto con il sistema suolo/cultura e che quindi sono i primi ad essere impattati. In particolare ci si riferisce alle porzioni libere delle conoidi alluvionali appenniniche (colore azzurro) e all'acquifero freatico di pianura rappresentati in precedenza in Figura 7.2 e Figura 7.3 del presente capitolo.

L'analisi condotta ha cercato di stimare, per i corpi idrici di falda, il grado di persistenza (limitato, medio, elevato) delle singole sostanze attive ritrovate, rispetto al carico apportato sul suolo.

Sono stati considerati i 16 principi attivi - Acetoclor, Azoxistrobin, Bentazone, Dimetenamid-P, Dimetoato, Etofumesate, Lenacil, MCPA, Mecoprop, Metalaxil, Metamitron, Metolaclor, Oxadiazon, Pirazone (cloridazon-iso), Propizamide e Terbutilazina (+desetil) - caratterizzati da stime di carico in uscita dal territorio regionale, attraverso i corsi d'acqua, dell'ordine o superiori agli 8 kg/anno. Per tali principi attivi (vedi Par. 3.2) si sono valutati gli impieghi per comune in kg/anno, partendo dall'estensione delle colture trattate.

Per ogni principio attivo considerato si è passati dall'impiego comunale all'uso sui singoli corpi idrici sotterranei in termini di apporto per km².

E' stata poi effettuata una prima elaborazione delle risultanze dei monitoraggi dei fitofarmaci eseguiti nelle stazioni della rete regionale delle acque sotterranee, nel periodo 2010-2012. Il protocollo analitico dei fitofarmaci comprende 69 sostanze attive, con frequenza di monitoraggio semestrale (per il freatico nell'anno 2010 la frequenza è stata trimestrale).

Per *ogni punto di monitoraggio* per il periodo definito, è possibile rilevare una o più sostanze; ogni sostanza ritrovata può essere riscontrata una o più volte con valori superiori al valore soglia (0,1 μg/L) e/o una o più volte con valori compresi tra il limite di quantificazione (LOQ) e il valore soglia (VS).

Su tutto il territorio regionale sono stati esaminati 155 pozzi appartenenti alle conoidi libere e al freatico di pianura; in 62 pozzi è stata ritrovata qualcuna delle sostanze attive (SA) monitorate; si veda al riguardo la Tabella 7.6.

Tabella 7.6 Numero di ritrovamenti dei fitofarmaci per corpo idrico sotterraneo (2010-2012)

Raggruppamento Corpo idrico	Corpo idrico	Numero pozzi per corpo idrico	Numero di pozzi con ritrovamenti SA	Numero di ritrovamenti > 0.1 µg/L	Numero di ritorvamenti < 0.1 µg/L	Numero di rilievi < LOQ		
	Conoide Tidone - libero	2	1	0	4	191		
Tidone-Luretta-Trebbia-Nure	Conoide Luretta - libero	1	1	0	1	389		
	Conoide Trebbia - libero	10	1	0	1	389		
Arda-Chiavenna	Conoide Arda - libero	1	1	0	2			
Stirone-Taro-Parma-Baganza-Enza	Conoide Parma-Baganza-libero	14	2	0	5 (*)	706		
Samaggia Chinanda Dana Lavina	Conoide Reno-Lavino – libero	6	1	0	1	194		
Samoggia-Ghironda-Reno-Lavino	Conoide Samoggia – libero	1	0	0	1	194		
Sillaro-Sellustra-Santerno	Conoide Santerno – libero	2	1	0	4 (*)	329		
Conca	Conoide Conca - libero	2	1	0	1	389		
	Altre conoidi	63	0	0	0			
Freatico di pianura	Freatico di pianura (fluviale e costiero)	53	53	71	428	26019		
TOTALE 155 62 71 448								
(*) Ritrovamenti non appar	tenenti alle 16 sostanze considerate	<u> </u>						

Sono stati esclusi i corpi idrici dove non si sono registrati riscontri positivi di sostanze attive o per i quali c'è stato un solo riscontro. I corpi idrici interessati sono risultati tre: conoide Arda – libero (1 pozzo); conoide Tidone – libero (1 pozzo); freatico di pianura, fluviale e costiero (36 pozzi).

Per ciascun pozzo in cui sono stati rilevati i fitofarmaci si è operato il confronto tra le stime dei quantitativi unitari (kg/km²) impiegati sul comune e la percentuale di ritrovamenti sul totale dei rilievi; la Tabella 7.7 fornisce la valutazione del grado di persistenza delle sostanze attive ritrovate per i diversi corpi idrici.

Tabella 7.7 Grado di persistenza delle sostanze attive per corpo idrico (2010-2012)

Principio attivo	Apporto unitario (kg/km²)	Ritrovamenti (n.)	N tot campioni (n.)	Incidenza ritrovamenti (%)	Grado di persistenza				
	FREATICO DI P	IANURA							
Acetoclor	3.24	14	213	6.6	bassa				
Bentazone	0.93	7	211	3.3	bassa				
Ciprodinil	0.41	5	206	2.4	bassa				
Clorantraniliprolo	0.11	5	206	2.4	bassa				
Cloridazon-iso	1.39	34	410	8.3	media				
Etofumesate	0.32	10	400	2.5	bassa				
Imidacloprid	0.42	22	388	5.7	bassa				
Lenacil	0.25	7	410	1.7	bassa				
Metalaxil	1.12	8	410	1.9	bassa				
Metamitron	4.3	6	410	1.5	bassa				
Metolaclor	6.42	67	410	16.3	media				
Penconazolo	0.12	7	410	1.7	bassa				
Pirimetanil	0.17	10	400	2.5	bassa				
Procimidone	0.1	5	410	1.2	bassa				
Propiconazolo	0.27	5	405	1.2	bassa				
Terbutilazina (incluso desetil)	6.5	171	820	20.9	media				
	CONOIDE TIDONE - LIBERO								
Terbutilazina (incluso desetil)	4.54	4	6	66.7	medio-alta				
	CONOIDE ARDA - LIBERO								
Terbutilazina (incluso desetil)	7	2	2	100	medio-alta (*)				
(*)	Disponibili 2 soli campio	ni, quindi dato in	certo						

Le sostanze attive impiegate hanno un basso impatto sui corpi idrici sotterranei e nel caso dei ritrovamenti, l'incidenza risulta bassa (escluso il Tidone dove per la Terbutilazina si arriva a circa il 60%).

Il corpo idrico maggiormente impattato risulta l'acquifero freatico di pianura; occorre ricordare che l'acquifero freatico di pianura è un corpo idrico sotterraneo con una profondità media inferiore ai 10 metri, isolato dal sistema profondo (dove la presenza di prodotti fitosanitari risulta irrilevante) e le cui acque non sono utilizzate per scopi potabili. Questo corpo idrico è a diretto contatto con l'attività antropica della pianura ed è quindi inevitabilmente sottoposto alla massima pressione agricola.

7.5 LE CRITICITÀ RISCONTRATE SUI CORPI IDRICI SOTTERRANEI CHE DETERMINANO UNO STATO "NON BUONO"

Lo stato complessivo dei corpi idrici sotterranei, che corrisponde al peggiore tra lo stato chimico e lo stato quantitativo, risulta classificato nelle classi buono e scarso sulla base dei dati di monitoraggio riferiti al quadriennio 2010-2013. Oltre all'individuazione delle classi di stato chimico e stato quantitativo sono stati definiti anche i livelli di confidenza come richiesto dalla Direttiva 2000/60/CE (Tabella 7.8)

Per definire lo stato chimico dei corpi idrici sotterranei si è tenuto conto dei valori di fondo naturale, per diversi corpi idrici di pianura, di ione ammonio, arsenico, boro e cloruri. A questo proposito, lo stato chimico dei corpi idrici montani risulta in generale buono, anche se per alcuni corpi idrici delle province di Parma e Piacenza è stato cautelativamente attribuito lo stato di scarso per la presenza di Cr(VI) di presumibile origine naturale, considerando il contesto geologico ad ofioliti, per il quale sono in corso approfondimenti sperimentali per verificarne l'origine naturale. Il livello di confidenza attribuito alla classe di ciascun corpo idrico tiene conto dei seguenti elementi:

- stabilità del giudizio di stato dell'intero corpo idrico negli anni considerati;
- numero di stazioni per corpo idrico;
- situazioni "borderline";
- raggruppamento corpi idrici.

Sulla base della definizione dello stato e dal confronto con le pressioni potenzialmente significative sono stati individuati gli impatti significativi individuati tra i seguenti:

- inquinamento da nutrienti;
- inquinamento chimico;
- inquinamento/intrusione salina;
- abbassamento dei livelli piezometrici per prelievi eccessivi rispetto la disponibilità delle risorse sotterranee

Tabella 7.8 Valutazione dello Stato quantitativo (SQUAS) e chimico (SCAS) dei corpi idrici sotterranei (2010-2013)

Cod. Corpo idrico	Nome Corpo idrico sotterraneo	Distretto (*)	Valutazione SQUAS 2010-2013	Livello confidenza SQUAS 2010-2013	Valutazione SCAS 2010-2013	Livello confidenza SCAS 2010-2013	Parametri critici SCAS 2010-2013
0010ER-DQ1- CL	Conoide Tidone - libero	PO	buono	A	Scarso	M	Nitrati, Organoalogenati
0020ER-DQ1- CL	Conoide Luretta - libero	PO	buono	A	Buono	M	
0030ER-DQ1- CL	Conoide Trebbia - libero	PO	buono	M	Scarso	M	Nitrati, Organoalogenati
0040ER-DQ1- CL	Conoide Nure - libero	PO	buono	M	Scarso	A	Nitrati, Cromo (VI)
0050ER-DQ1- CL	Conoide Arda - libero	PO	buono	A	Scarso	M	Nitrati
0060ER-DQ1- CL	Conoide Stirone-Parola - libero	PO	buono	A	Scarso	M	Nitrati
0070ER-DQ1- CL	Conoide Taro - libero	РО	buono	A	Scarso	M	Nitrati, Organoalogenati, Nichel
0080ER-DQ1- CL	Conoide Parma- Baganza - libero	РО	buono	A	Scarso	A	Nitrati, Cloruri, Organoalogenati
0090ER-DQ1- CL	Conoide Enza - libero	РО	buono	A	Scarso	A	Nitrati, Organoalogenati
0100ER-DQ1- CL	Conoide Crostolo - libero	РО	buono	A	Scarso	В	Ione Ammonio
0110ER-DQ1- CL	Conoide Tresinaro - libero	РО	scarso	A	Buono	М	
0120ER-DQ1- CL	Conoide Secchia - libero	РО	buono	A	Scarso	A	Nitrati, Organoalogenati
0130ER-DQ1- CL	Conoide Tiepido - libero	РО	scarso	A	Scarso	В	Nitrati, Organoalogenati
0140ER-DQ1- CL	Conoide Panaro - libero	РО	buono	A	Scarso	A	Nitrati, Organoalogenati
0150ER-DQ1- CL	Conoide Samoggia - libero	AS	buono	A	Scarso	М	Organoalogenati
0160ER-DQ1- CL	Conoide Reno-Lavino - libero	AS	buono	A	Buono	A	
0170ER-DQ1- CL	Conoide Savena - libero	AS	buono	A	Buono	М	
0180ER-DQ1- CL	Conoide Zena - libero	AS	scarso	A	Buono	В	
0190ER-DQ1- CL	Conoide Idice - libero	AS	buono	A	Buono	В	
0200ER-DQ1-	Conoide Sillaro - libero	AS	scarso	A	Buono	В	

Cod. Corpo idrico	Nome Corpo idrico sotterraneo	Distretto (*)	Valutazione SQUAS 2010-2013	Livello confidenza SQUAS 2010-2013	Valutazione SCAS 2010-2013	Livello confidenza SCAS 2010-2013	Parametri critici SCAS 2010-2013
CL							
0210ER-DQ1- CL	Conoide Santerno - libero	AS	scarso	A	Buono	A	
0220ER-DQ1- CL	Conoide Senio - libero	AS	scarso	M	Scarso	М	Nitrati
0230ER-DQ1- CL	Conoide Lamone - libero	AS	scarso	М	Scarso	В	Nitrati, Organoalogenati
0240ER-DQ1- CL	Conoide Montone - libero	AS	scarso	M	Scarso	В	Nitrati
0250ER-DQ1- CL	Conoide Rabbi - libero	AS	scarso	M	Scarso	В	Nitrati
0260ER-DQ1- CL	Conoide Ronco - libero	AS	scarso	M	Scarso	M	Nitrati
0270ER-DQ1- CL	Conoide Savio - libero	AS	scarso	M	Scarso	M	Nitrati, Solfati, Organoalogenati
0280ER-DQ1- CL	Conoide Marecchia - libero	AS	scarso	M	Scarso	A	Nitrati, Organoalogenati
0290ER-DQ1- CL	Conoide Conca - libero	AS	scarso	A	Buono	A	
0300ER-DQ2- CCS	Conoide Tidone-Luretta - confinato superiore	PO	buono	A	Buono	A	
0310ER-DQ2- CCS	Conoide Nure - confinato superiore	РО	buono	A	Buono	В	
0320ER-DQ2- CCS	Conoide Chiavenna - confinato superiore	PO	buono	A	Scarso	В	Nitrati
0330ER-DQ2- CCS	Conoide Arda - confinato superiore	PO	buono	A	Scarso	A	Nitrati
0340ER-DQ2- CCS	Conoide Stirone-Parola - confinato superiore	РО	buono	A	Buono	M	
0350ER-DQ2- CCS	Conoide Taro - confinato superiore	РО	buono	A	Buono	A	
0360ER-DQ2- CCS	Conoide Parma- Baganza - confinato superiore	РО	buono	A	Buono	A	
0370ER-DQ2- CCS	Conoide Enza - confinato superiore	РО	buono	A	Buono	A	
0380ER-DQ2- CCS	Conoide Crostolo- Tresinaro - confinato superiore	РО	buono	A	Buono	A	
0390ER-DQ2- CCS	Conoide Secchia - confinato superiore	РО	buono	A	Buono	A	
0400ER-DQ2- CCS	Conoide Tiepido - confinato superiore	PO	scarso	A	Scarso	A	Nitrati
0410ER-DQ2- CCS	Conoide Panaro - confinato superiore	PO	buono	A	Buono	A	
0420ER-DQ2- CCS	Conoide Samoggia - confinato superiore	AS	buono	M	Buono	В	
0430ER-DQ2- CCS	Conoide Ghironda - confinato superiore	AS	buono	A	Buono	В	
0440ER-DQ2- CCS	Conoide Reno-Lavino - confinato superiore	AS	buono	A	Buono	A	
0450ER-DQ2- CCS	Conoide Aposa - confinato superiore	AS	buono	A	Buono	В	
0460ER-DQ2- CCS	Conoide Savena - confinato superiore	AS	buono	A	Buono	A	
0470ER-DQ2- CCS	Conoide Zena-Idice - confinato superiore	AS	buono	A	Buono	M	
0480ER-DQ2- CCS	Conoide Quaderna - confinato superiore	AS	buono	A	Buono	M	
0490ER-DQ2- CCS	Conoide Sillaro - confinato superiore	AS	buono	A	Buono	M	
0500ER-DQ2- CCS	Conoide Sellustra - confinato superiore	AS	scarso	A	Buono	В	
0510ER-DQ2- CCS	Conoide Santerno - confinato superiore	AS	buono	A	Buono	A	
0520ER-DQ2- CCS	Conoide Senio - confinato superiore	AS	scarso	M	Buono	A	
0530ER-DQ2- CCS	Conoide Lamone - confinato superiore	AS	buono	М	Buono	В	
0540ER-DQ2- CCS	Conoide Ronco- Montone - confinato superiore	AS	scarso	M	Buono	A	
0550ER-DQ2-	Conoide Savio -	AS	scarso	M	Buono	A	

Cod. Corpo idrico	Nome Corpo idrico sotterraneo	Distretto (*)	Valutazione SQUAS 2010-2013	Livello confidenza SQUAS 2010-2013	Valutazione SCAS 2010-2013	Livello confidenza SCAS 2010-2013	Parametri critici SCAS 2010-2013
CCS	confinato superiore						
0560ER-DQ2- CCS	Conoide Pisciatello - confinato superiore	AS	scarso	A	Buono	M	
0570ER-DQ2-	Conoide Rubicone -	4.0			D.	3.6	
CCS	confinato superiore	AS	scarso	A	Buono	M	
0580ER-DQ2- CCS	Conoide Uso - confinato superiore	AS	scarso	A	Buono	В	
0590ER-DQ2-	Conoide Marecchia -	AS		M	C	M	Nit
CCS	confinato superiore	AS	scarso	IVI	Scarso	IVI	Nitrati, Organoalogenati
0600ER-DQ2- CCS	Conoide Conca - confinato superiore Pianura Alluvionale	AS	buono	M	Scarso	M	Conducibilità elettrica, Cloruri, Organoalogenati
0610ER-DQ2- PACS	Appenninica - confinato superiore	PO - AS	buono	A	Buono	A	
0620ER-DQ2- TPAPCS	Transizione Pianura Appenninica-Padana - confinato superiore	PO - AS	buono	A	Buono	A	
0630ER-DQ2- PPCS	Pianura Alluvionale Padana - confinato superiore	РО	buono	A	Buono	Α	
0640ER-DQ2- PCC	Pianura Alluvionale Costiera - confinato	PO - AS	buono	A	Buono	A	
0650ER- DET1-CMSG	Conoidi montane e Sabbie gialle occidentali	РО	buono	M	Scarso	A	Nitrati, Organoalogenati
0660ER- DET1-CMSG	Conoidi montane e Sabbie gialle orientali	AS	scarso	M	Buono	M	
2300ER-DQ2- CCI	Conoide Tidone-Luretta - confinato inferiore	РО	buono	A	Buono	M	
2301ER-DQ2- CCI	Conoide Trebbia - confinato inferiore	PO	buono	A	Buono	A	
2310ER-DQ2- CCI	Conoide Nure - confinato inferiore	РО	buono	A	Buono	В	
2340ER-DQ2- CCI	Conoide Stirone-Parola - confinato inferiore	РО	buono	A	Buono	M	
2350ER-DQ2- CCI	Conoide Taro - confinato inferiore	РО	buono	A	Buono	В	
2360ER-DQ2- CCI	Conoide Parma- Baganza - confinato inferiore	РО	buono	A	Scarso	M	Nitrati
2370ER-DQ2- CCI	Conoide Enza - confinato inferiore	PO	buono	A	Buono	A	
2380ER-DQ2- CCI	Conoide Crostolo- Tresinaro - confinato inferiore	РО	buono	A	Scarso	A	Nitrati, Organoalogenati
2390ER-DQ2- CCI	Conoide Secchia - confinato inferiore	PO	buono	A	Scarso	M	Nitrati, Organoalogenati
2400ER-DQ2- CCI	Conoide Tiepido - confinato inferiore	РО	buono	A	Scarso	A	Nitrati, Boro
2410ER-DQ2- CCI	Conoide Panaro - confinato inferiore	РО	buono	A	Scarso	В	Nitrati
2420ER-DQ2- CCI	Conoide Samoggia - confinato inferiore	AS	buono	A	Buono	A	
2430ER-DQ2- CCI	Conoide Ghironda - confinato inferiore	AS	scarso	A	Buono	В	
2440ER-DQ2- CCI	Conoide Reno-Lavino - confinato inferiore	AS	scarso	A	Scarso	M	Organoalogenati
2450ER-DQ2- CCI	Conoide Aposa - confinato inferiore	AS	buono	A	Scarso	В	Ione Ammonio
2460ER-DQ2- CCI	Conoide Savena - confinato inferiore	AS	buono	A	Scarso	В	Organoalogenati
2470ER-DQ2- CCI	Conoide Zena-Idice - confinato inferiore	AS	buono	A	Scarso	М	Nitrati, Ione Ammonio, Organoalogenati
2480ER-DQ2- CCI	Conoide Quaderna - confinato inferiore	AS	buono	A	Scarso	В	Ione Ammonio
2490ER-DQ2- CCI	Conoide Sillaro - confinato inferiore	AS	scarso	A	Buono	М	
2500ER-DQ2- CCI	Conoide Sellustra - confinato inferiore	AS	scarso	A	Buono	A	
2510ER-DQ2- CCI	Conoide Santerno - confinato inferiore	AS	buono	A	Buono	В	
2520ER-DQ2- CCI	Conoide Senio - confinato inferiore	AS	scarso	A	Buono	В	

Cod. Corpo idrico	Nome Corpo idrico sotterraneo	Distretto (*)	Valutazione SQUAS 2010-2013	Livello confidenza SQUAS 2010-2013	Valutazione SCAS 2010-2013	Livello confidenza SCAS 2010-2013	Parametri critici SCAS 2010-2013
2530ER-DQ2- CCI	Conoide Lamone - confinato inferiore	AS	scarso	A	Buono	M	
2540ER-DQ2- CCI	Conoide Ronco- Montone - confinato inferiore	AS	scarso	М	Buono	М	
2550ER-DQ2- CCI	Conoide Savio - confinato inferiore	AS	buono	A	Buono	В	
2590ER-DQ2- CCI	Conoide Marecchia - confinato inferiore	AS	buono	A	Buono	M	
2700ER-DQ2- PACI	Pianura Alluvionale - confinato inferiore	PO - AS	buono	A	Buono	A	
5010ER-AV2- VA	Depositi delle vallate appenniniche	PO - AS	buono	В	Buono	М	
6010ER- LOC3-CIM	Verucchio - M Fumaiolo	AS	buono	M	Buono	М	
6020ER- LOC1-CIM	Castel del Rio - Castrocaro Terme - M Falterona - Mercato Saraceno	AS	buono	М	Buono	М	
6030ER- LOC1-CIM	Vezzano sul Crostolo - Scandiano - Ozzano dell'Emilia - Brisighella	PO - AS	buono	M	Buono	M	
6040ER- LOC1-CIM	Marmoreto - Ligonchio	РО	buono	M	Buono	M	
6050ER- LOC1-CIM	M Marmagna - M Cusna - M Cimone - Corno alle Scale - Castiglione dei Pepoli	PO - AS	buono	М	Buono	М	
6060ER- LOC3-CIM	Suviana - Porretta Terme	AS	buono	M	Buono	M	
6070ER- LOC3-CIM	Campolo - Collina - Monteacuto Ragazza	AS	buono	М	Buono	M	
6080ER- LOC1-CIM	Monghidoro	AS	buono	M	Buono	M	
6090ER- LOC3-CIM	Pianoro - Sasso Marconi	AS	buono	M	Buono	М	
6100ER- LOC3-CIM	Pavullo - Zocca	PO - AS	buono	M	Buono	М	
6110ER- LOC3-CIM	Marzabotto	AS	buono	M	Buono	М	
6120ER- LOC3-CIM	Monteveglio - Calderino - Frassineto - Sassonero	AS	buono	М	Buono	М	
6130ER- LOC1-CIM	Castel di Casio - Camugnano	AS	buono	М	Buono	M	
6140ER- LOC1-CIM	Serramazzoni	PO	buono	M	Buono	M	
6150ER- LOC3-CIM	Castellarano - Montebonello	PO	buono	M	Buono	М	
6160ER- LOC1-CIM	Villa Minozzo - Toano - Prignano sul Secchia	PO	buono	M	Buono	М	
6170ER- LOC1-CIM	M Prampa - Sologno - Secchio	PO	buono	M	Buono	М	
6180ER- LOC1-CIM	Pievepelago - Sasso Tignoso - Piandelagotti	РО	buono	M	Buono	M	
6190ER- LOC3-CIM	M Fuso - Castelnovo Monti - Carpineti	PO	buono	М	Buono	M	
6200ER- LOC3-CIM	M Ventasso - Busana	PO	buono	M	Buono	M	
6210ER- LOC1-CIM	Ramiseto	PO	buono	M	Buono	M	
6220ER- LOC1-CIM	Corniglio - Neviano Arduini	PO	buono	M	Buono	M	
6230ER- LOC1-CIM	Calestano - Langhirano	PO	buono	M	Buono	M	
6240ER- LOC1-CIM	Cassio	PO	buono	M	Buono	M	
6250ER-	Salsomaggiore	PO	buono	M	Buono	М	
LOC3-CIM 6260ER-	M Barigazzo	PO	buono	M	Scarso	В	Cromo (VI)
LOC1-CIM 6270ER-	M Molinatico - M	PO		M	Buono	M	

Cod. Corpo idrico	Nome Corpo idrico sotterraneo	Distretto (*)	Valutazione SQUAS 2010-2013	Livello confidenza SQUAS 2010-2013	Valutazione SCAS 2010-2013	Livello confidenza SCAS 2010-2013	Parametri critici SCAS 2010-2013
(200ED	Bocco						
6280ER- LOC1-CIM	Passo dell Cisa - Mormorola	PO	buono	M	Buono	M	
6290ER- LOC1-CIM	M Zuccone	PO	buono	M	Buono	M	
6300ER- LOC1-CIM	M Orocco	PO	buono	M	Scarso	В	Cromo (VI)
6310ER- LOC1-CIM	Viano - Rossena	РО	buono	М	Buono	M	
6320ER- LOC1-CIM	M Lama - M Menegosa	РО	buono	М	Scarso	В	Cromo (VI)
6330ER- LOC1-CIM	Pellegrino Parmense	РО	buono	M	Buono	М	
6340ER- LOC1-CIM	Bardi - Monte Carameto	PO	buono	M	Buono	М	
6350ER- LOC1-CIM	Varsi - Varano Melegari	PO	buono	M	Buono	М	
6360ER- LOC3-CIM	Monte Penna - Monte Nero - Monte Ragola	PO	buono	M	Scarso	В	Cromo (VI)
6370ER- LOC1-CIM	Ferriere - M Aserei	PO	buono	M	Scarso	В	Cromo (VI)
6380ER- LOC3-CIM	M Armelio	PO	buono	M	Scarso	В	Cromo (VI)
6390ER- LOC1-CIM	M Alfeo - M Lesima	PO	buono	M	Buono	М	
6400ER- LOC1-CIM	M Penice - Bobbio	PO	buono	M	Buono	М	
6410ER- LOC3-CIM	Selva - Boccolo Tassi - Le Moline	РО	buono	М	Buono	M	
6420ER- LOC1-CIM	Farini - Bettola	PO	buono	M	Buono	M	
6430ER- LOC1-CIM	Ottone - M delle Tane	РО	buono	M	Scarso	В	Cromo (VI)
6440ER- LOC3-CIM	Val d'Aveto	PO	buono	M	Buono	M	
6450ER- LOC1-CIM	Passo della Cisa	РО	buono	М	Buono	M	
6460ER- LOC1-CIM	Bosco di Corniglio - M Fageto	РО	buono	М	Buono	M	
6470ER- LOC1-CIM	Pianello Val tidone - Rivergaro - Ponte dell'Olio	РО	buono	М	Buono	M	
6480ER- LOC1-CIM	Pecorara	РО	buono	М	Buono	M	
6490ER- LOC3-CIM	Val Senatello - Monte Carpegna	AS	buono	М	Scarso	В	Fitofarmaci
9010ER-DQ1- FPF	Freatico di pianura fluviale	PO - AS	buono	М	Scarso	A	Conducibilità elettrica, Cloruri, Solfati, Nitrati, Nitriti, Ione Ammonio, Boro, Arsenico, Cr(VI), Nichel, Organoalogenati, Fitofarmaci
9020ER-DQ1- FPC	Freatico di pianura costiero	PO - AS	buono	М	Scarso	A	Conducibilità elettrica, Cloruri, Solfati, Nitrati, Ione Ammonio

Legenda

PO – Distretto fiume Po; AS – Distretto dell'Appennino Settentrionale Livello di confidenza SQUAS e SCAS: A = Alto; M 0 Medio; B = Basso)