

From ambition to reality: weaving the threads of net-zero delivery.

UNDER

October, 27th 2021, 2.30 pm «Ecomondo», Fiera di Rimini

Emilia-Romagna. Il futuro lo facciamo insieme.

Transitioning the World to 100% Clean, Renewable **Energy and Storage for** Everything

Mark Z. Jacobson **Stanford University**

October 27, 2021 International Conference, Italy

What are the Problems? Why act Quickly?

Fossil-fuel and biofuel air pollution cause ~7 million air pollution deaths/yr worldwide, costing ~\$30 trillion/year

Global warming will cost ~\$30 trillion/year by 2050.

Fossil fuels will become scarce, increasing energy prices and economic, political, and social instability

Drastic problems require immediate solutions

Wind, Water, Solar (WWS) Solution **Electrify or Provide Direct Heat For All Sectors and Provide the Electricity** and Heat with 100% WWS

ELECTRICITY	TRANSPORTATION	HE/
Wind	Battery-electric	Ele
Solar PV/CSP	• H ₂ fuel cell	Di
Geothermal		Ge
Hydro		So
Tidal/Wave		

ATING/COOLING

ectric heat pumps strict heat/cold eothermal heat lar heat

INDUSTRY

Electric arc furnaces Induction furnaces Resistance furnaces Dielectric heaters Electron beam heaters

Types of Storage for a 100% WWS System

ELECTRICITY

CSP with storage **Pumped hydro storage Existing hydroelectric Batteries** Flywheels **Compressed air Gravitational Storage**

- **HEATING/COOLING**
 - Water tank

OTHER Hydrogen

- Ice
- Underground
 - Borehole
 - Water Pit
 - Aquifer
- **Building materials**

Gravitational Storage With Solid Masses

Stanford University 4th Generation District Heating System

Seasonal Heat Storage in Underground Boreholes Okotoks, Canada

http://www.sustainapedia.com/drake-landing-solar-community/ https://www.leidos.com/project/north-america's-first- Mark Z. Jacobson (2015) right

Seasonal District Heat Storage in Covered Water Pit Vojens, Denmark

Nighttime Storage in Ice for Daytime Air Cooling

Transitioning an Individual Home to Run on WWS Electricity/Storage and No Gas

Photo by M.Z. Jacobson

Ductless Mini-Split Electric Heat Pump Air Heater / Air Conditioner

Electric Heat Pump Water Heater

Photo by M.Z. Jacobson

Electric Induction Cooktop

Photo by M.Z. Jacobson

Avoided costs of all-electric home Gas hookup fee: 3-8 K Gas pipes: 2-15 K **Electric bill 1-3 K per year** Natural gas bill 1-3 K per year Vehicle fuel bill 1-4 K per year Total: 5-23 K plus 3-10 K per year

5v pavback with subsidy: 10v w/o

Four Years of Energy Use Generated 120% of all home and vehicle energy → No electric bill, natural gas bill, or gasoline bill Received average \$800/yr from CCA for excess electricity to grid

No Blackout on Hottest Day of Year Sept. 6, 2020 **Outside temperature: 106 F Inside temperature: 77 F**

Blue=consumption by solar during day or batteries after sunset (2-3.3 kW/6.4 kWh)

Red=grid electricity

Can the World Transition to 100%, Clean, Renewable **Energy for all Purposes?**

Roadmaps for 143 Countries

All-Purpose End-Use Power Demand

Year and Fuel Type 143-Countries 2016 End-use demand 12.6 TW 20.3 TW 2050 Demand with current fuels (BAU) 2050 Demand with WWS 8.7 TW 2050 Demand reduction w/ WWS 57.1% 21.7% efficiency of BE, HFC v. ICE 3.4% efficiency of electric industry 13.2% efficiency of heat pumps 12.1% eliminating fuel mining 6.6% efficiency beyond BAU

Percent of 2050 143-Country and Southeast U.S. End-Use **Demand Supplied by WWS**

TECHNOLOGY Onshore wind Offshore wind **Rooftop Solar PV** Utility PV CSP Geothermal Hydroelectric Tidal Wave

World 30.5% 14.5 24.9 19.0 3.93 0.92 5.72 0.08 0.34 100%

Italy 36.8% 14.8 21.6 14.8 2.72 0.97 8.03 0.02 0.18 100%

Area Beyond 2018 Installations to Power 143 Countries for all Purposes With 100% WWS in 2050

Percent of 143-Country Land Onshore wind: 0.48% **Utility PV+CSP:** 0.17% 0.65% Total

Percent of Italy Land Onshore wind: 1.55% **Utility PV+CSP:** 0.34% Total 1.89%

Matching the Italy All-Sector Demand Every 30 Sec. With 100% WWS+Storage for 1 Year (2050) and 100 Days

Red = Energy supply Blue = Energy demand + change in storage + losses + shedding

Interconnecting Countries Reduces Cost

Norway alone: Denmark alone:

Total:

\$17.3 billion/yr **Norway+Denmark:**

\$10.8 billion/yr \$11.0 billion/yr

\$21.8 billion/yr

Interconnecting 21% less expensive

Energy Cost for 143 Countries in 24 Regions Resulting in a Stable Grid Upon Electrification of all Energy With 100% WWS+Storage World: 9.0 cents/kWh **Capital Cost: \$73 trillion**

> U.S.: 9.3 cents/kWh **Capital cost: \$7.8 trillion**

China: 8.3 cents/kWh **Capital cost: \$16.6 trillion**

Italy: 8.4 cents/kWh **Capital cost: \$570 billion**

2050 World BAU vs WWS Cost

BAU fuel energy cost BAU fuel health cost BAU fuel climate cost BAU total social cost

WWS total social cost

WWS reduces energy cost 61.4% and economic (social) cost 91%

\$17.7 trillion/yr \$30.0 trillion/yr \$28.4 trillion/yr \$76.1 trillion/yr

\$6.8 trillion/yr

Jacobson et al. (2018)

2050 Italy BAU vs WWS Cost

BAU fuel energy cost BAU fuel health cost BAU fuel climate cost BAU total social cost

WWS total social cost

WWS reduces energy cost 71% and economic (social) cost 90%

\$211 bil/yr \$169 bil/yr \$239 bil/yr \$618 bil/yr

\$61.4 bil/yr

Jacobson et al. (2018)

RETHINKING "HOBBITS" What They Mean for Human Evolution

SCIENTIFIC

AMERICAN

THE EVERYTHING TV Get Ready for the Wide-Screen Web

> The Long-Lost Siblings of OUR SUN page 40

A Plan for a Sustainab re How to get all energy from wind, water and solar power by 2030

Chronic Pain What Goes Wrong

Plus:

- The Future of Cars
- Farms in Skyscrapers

2009

100% worldwide wind, water, solar (WWS) all-sector energy plan introduced **Basis for Green New Deal** Conclusion While technically and economically possible to transition by 2030, social and political barriers make complete transition more practical by 2050 with most (~80%) by 2030

61 Countries Committed to 100% Renewable Electricity

Afghanistan Aruba Bangladesh **Barbados Bhutan Burkina Faso Cabo Verde** Cambodia Colombia Comoros Congo, DR **Cook Islands Costa Rica**

Denmark Djibouti Dominica Dom Rep. Ethiopia Fiji Gambia Ghana Grenada Guatemala Haiti Honduras Kenya

Kirbati Lebanon Madagas Malawi Maldives Marsh Is. Mongolia Morocco Nepal Niger Niue Palau **Palestine**

Papua N.G. **Philippines** Portugal Rwanda Samoa Senegal Solom Is. S. Sudan Spain Sri Lanka St. Lucia Sudan Sweden

Tanzania **Timor-Les** Tokelau Tunisia Tuvalu **Scotland** Vanuatu Vietnam Yemen

Iceland (H,G) Norway (H, W) Costa Rica (H, W) Paraguay (H) Uruguay (H, W) **Tajikistan (H)** Albania (H) Scotland (W, H)

Kenya (G, H) **Bhutan (H)** Nepal (H) Ethiopia (H, W) Congo, DR (H)

13 Countries Near or Above 100% Renewable Electricity in Annual **Average and Their Top Two Electricity Sources**

> H = hydro**G** = geothermal W = wind

15 100% Renewable Electricity State/Territory Laws/Exec Orders Resulting From WWS Roadmaps 100% by 2030 **Rhode Island By 2032** Washington D.C. **By 2040 Connecticut, Oregon By 2045** Hawaii, California, New Mexico, Washington State, New York **By 2050** Puerto Rico, Nevada, Maine, Wisconsin, Virginia, New Jersey

Atlanta (GA) Chicago (IL) Cincinatti (OH) **Cleveland (OH) Denver (CO)** Kansas City (MO) Los Angeles (CA) Madison (WI) Minneapolis (MN) **Orlando (FL) Philadelphia (PA) Portland (OR)**

Some of 180+ US Cities/Counties Committed to 100% Renewables Salt Lake City (UT) Sylva (NC) San Diego (CA) Moab (UT) **San Francisco (CA) Boulder (CO)** San Jose (CA) **Burlington (VT) Spokane (WA) Rochester (MN)** St. Louis (MO) **Fayetteville (AR)** St. Paul (MN) Palo Alto (CA) Middleton (WI) **St. Petersburg (FL) Tallahassee (FL)** Missoula (MT) **Abita Springs (LA)** Questa (NM) **Fayetteville (AR) Sarasota (FL)** Hanover (NH) **Clarkston (GA)**

Some of the 340+ Companies Committed to 100% Renewables

IKEA Google Microsoft Apple Workday Bloomberg P&G GM Kellogg's Salesforce

Adobe H&M Nestle S&P T-Mobile **BMW** Group Ebay Goldman-Sachs Lego Organic Valley

JPMor/Chas HP Nike Starbucks **AB** InBev Burberry Facebook HSBC Mars Amazon

Coca Cola Goldman-Sachs Johnson & Johnson Walmart Bank of America Citi Estee Lauder Infosys Morgan Stanley Wells Fargo

Summary – Transitioning World to 100% WWS

- **Creates 28 million more jobs than are lost worldwide**
- **Requires only 0.17% of land for footprint; 0.48% for spacing**
- **Avoids ~7 mil. air pollution deaths per year**
- **Slows then reverses global warming**
- Grids can stay stable throughout the world with 100%
- WWS absolute energy costs are 60% less than of fossils
- WWS absolute energy+health+climate costs 90% less than of fossils

Book on 100% WWS https://web.stanford.edu/group/efmh/jacobson/WWSBook/WW **SBook.html** Roadmaps web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-**USState-plans.html Online Course on 100% WWS** https://online.stanford.edu/courses/cee176b-100-cleanrenewable-energy-and-storage-everything **Infographic maps** https://sites.google.com/stanford.edu/wws-roadmaps/home **Twitter: @mzjacobson**

Regione Emilia-Romagna

UNDER

October, 27th 2021, 2.30 pm «Ecomondo», Fiera di Rimini

Thanks

