

Gli effetti di liquefazione osservati e i metodi di valutazione del rischio

Giovanni Vannucchi

Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di Firenze

Bologna, 21 maggio 2013

Effetto SISMA 2012

Sommario:

- 1. Che cosa è successo
- 2. Che cosa è la liquefazione
- 3. Quando si verifica la liquefazione
- 4. Metodi di valutazione del rischio di liquefazione

Il terremoto che ha colpito la pianura padanaemiliana il 20 maggio 2012 ha prodotto diffusi ed estesi fenomeni di liquefazione

Quistello

VENETO LOMBARDIA Gongordia Mirandola Finale Emili Dodici Morell Mirabello EMILIA-ROMAGNA San Carlo 10,000 Kilometers

Localizzazione dei casi di liquefazione osservati

Manifestazioni di liquefazione osservate in Emilia

Crateri e vulcanelli

Manifestazioni di liquefazione osservate in Emilia



Fuoriuscite di acqua e sabbia

Manifestazioni di liquefazione osservate in Emilia

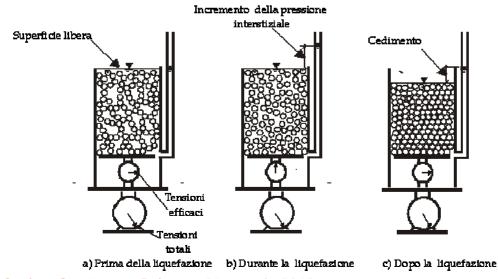
Crepe, rotture nel terreno e dislocazioni

Manifestazioni di liquefazione osservate in Emilia

Abbassamenti e sollevamenti del terreno

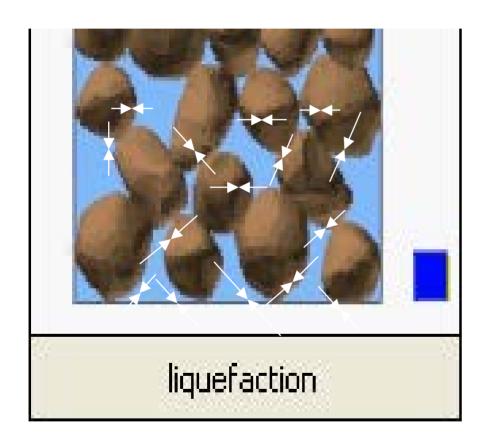
Manifestazioni di liquefazione osservate in Emilia

Movimenti orizzontali (lateral spreading)



Definizioni:

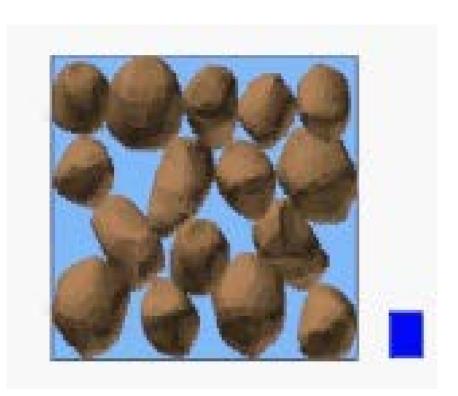
2. Che cosa è la liquefazione


Liquefazione è lo stato fisico in cui si può venire a trovare un terreno sabbioso saturo allorquando perde la sua resistenza al taglio per effetto dell'incremento e dell'accumulo delle pressioni interstiziali.

Con il termine liquefazione si indicano differenti fenomeni fisici (liquefazione ciclica, mobilità ciclica, fluidificazione) osservati nei materiali granulari poco addensati saturi durante l'applicazione rapida di carichi dinamici e ciclici in condizioni non drenate.

2. Che cosa è la liquefazione

Un terreno granulare saturo è costituito da un insieme di grani a contatto immersi in acqua.


Il peso efficace delle particelle produce degli sforzi che si trasmettono nei punti di contatto conferendo resistenza al taglio.

La resistenza è di tipo frizionale ed è espressa dalla legge di Mohr-Coulomb

$$\tau_f = \sigma' \cdot \tan \phi' = (\sigma - u) \cdot \tan \phi'$$

2. Che cosa è la liquefazione

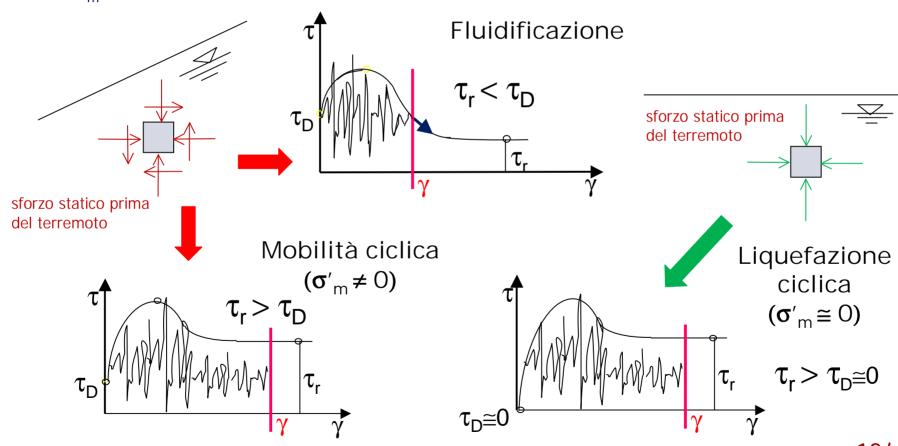
Durante lo scuotimento ciclico si realizzano condizioni non drenate.

L'acqua rimane intrappolata e si ha un incremento delle pressioni interstiziali • u che provoca un decremento della resistenza al taglio.

Quando la resistenza al taglio si annulla il terreno si comporta come un fluido

La resistenza al taglio si annulla quando: $r_{u} = rapporto \ di \ sovra-pressione \ interstiziale$

$$r_u = \frac{\Delta u}{\sigma_0} = 1$$



2. Che cosa è la liquefazione

Fenomeni inclusi nel termine liquefazione:

 τ_D = sforzo di taglio statico prima del terremoto

 τ_r = resistenza al taglio non drenata residua σ_m' = tensione efficace media

Fenomeni inclusi nel termine liquefazione:

2. Che cosa è la liquefazione

Liquefazione ciclica

<u>Condizioni</u>: Assenza di sforzi di taglio necessari per l'equilibrio statico (superfici piane e orizzontali, assenza di carichi in superficie)

Manifestazioni: crateri e vulcanelli di sabbia, fratture, ondulazioni e cedimenti del piano campagna

Danneggiamenti: assenti (vulnerabilità ed esposizione nulle o trascurabili)

Per il terremoto della pianura padana-emiliana: fenomeni di liquefazione ciclica diffusissimi e molto estesi

Mobilità ciclica

<u>Condizioni</u>: Sforzi di taglio necessari per l'equilibrio statico **inferiori** alla resistenza al taglio dopo il terremoto

<u>Manifestazioni</u>: deformazioni permanenti limitate, spostamenti laterali, cedimenti assoluti e differenziali, smottamenti

<u>Danneggiamenti</u>: da modesti a gravi a strutture, infrastrutture e sotto-servizi

Per il terremoto della pianura padana-emiliana: fenomeni di mobilità ciclica diffusi

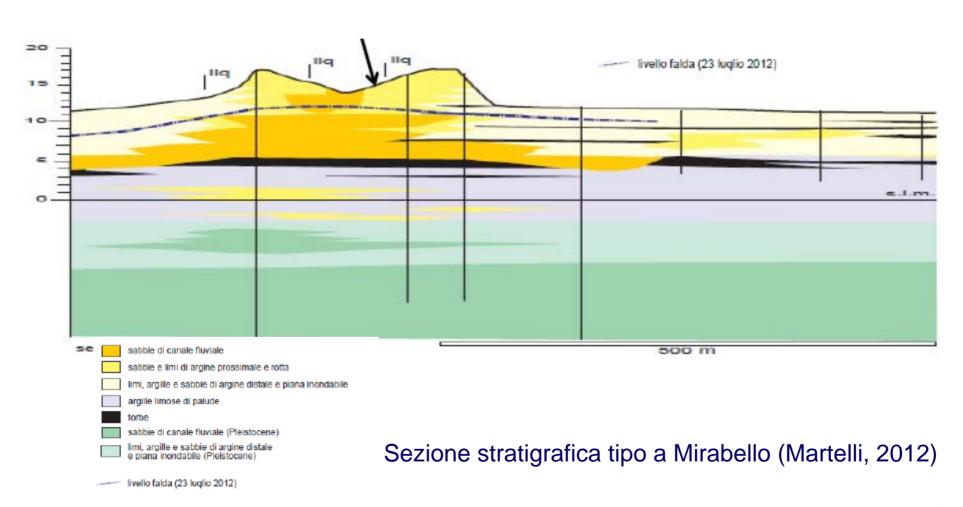
Fluidificazione

<u>Condizioni</u>: Sforzi di taglio necessari per l'equilibrio statico **superiori** alla resistenza al taglio dopo il terremoto

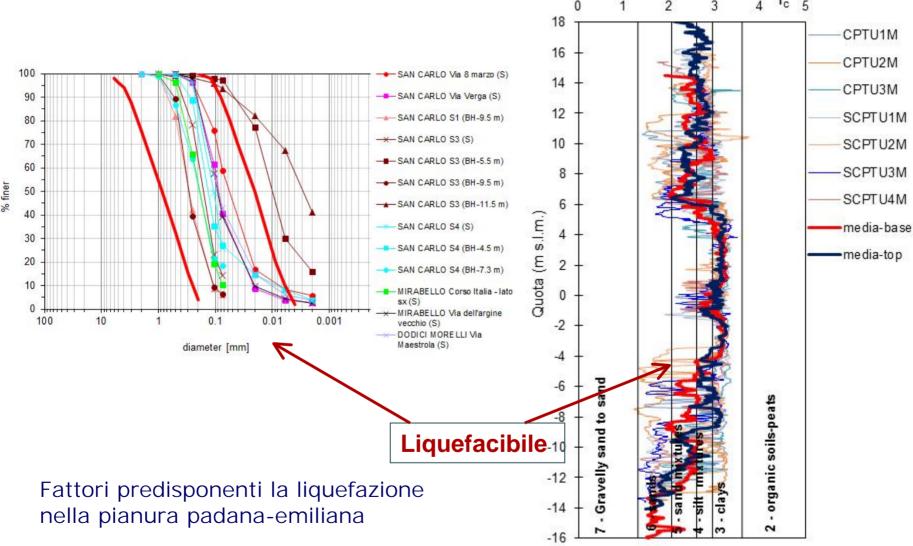
Manifestazioni: grandi deformazioni permanenti, collassi di fondazioni e opere di sostegno, frane

Danneggiamenti: gravissimi

Per il terremoto della pianura padana-emiliana: fenomeni di fluidificazione assenti (per fortuna!!!)


La liquefazione generalmente avviene quando sono verificate simultaneamente le condizioni predisponenti e scatenanti

Condizioni del terreno (fattori predisponenti)


- Depositi sabbiosi (0.02 mm < D_{50} < 2 mm, CF < 15%), sedimentari recenti (olocene, pleistocene), sciolti (D_R < 60%), saturi sotto falda (Z_w < 5 m da p.c.).

Nella pianura padana-emiliana le condizioni predisponenti si verificano tutte

Fattori predisponenti la liquefazione nella pianura padana-emiliana

Giovanni Vannucchi - Gli effetti di liquefazione osservati e i metodi di valutazione del rischio

Fattori predisponenti la liquefazione nella pianura padana-emiliana

3. Quando si verifica

[442] 1570. Settembre 17. Ferrara. Oggi Fra gli effetti prodotti da questo terremoto devonsi notare i rombi sotterranei, i bagliori repentini nell'atmosfera, il gonfiamento improvviso delle acque del Po, certe elevazioni ed avallamenti del suolo fuori Porta S. Pietro e S. Paolo, alla torre della Fossa ed altrove nei Polesini di S. Giorgio e di S. Giovanni Battista, ove avvennero pure emissioni violente di acqua nerastra e di arena. 🛂 Effettua la ricerca 🕶 🐗 🦽 🕶 Compilazione automatica PANARO PANARO RENO erritorio di Bologna vanni Antonio, 1555-1617 gna Agl' Illmi. SSr. proni colmi. li SSr. Senatori di Bologna ; Hauendo io migliorato aßai il discano del contando di Bologna n<mark>on solo</mark> et accrescendolo di molti luoghi mancati ma anco riducendolo in miglior positura et continuatione cotili stati uicini c Mirabello La liquefazione tende a riprodursi San Martina ove si è già verificata in passato 1599

Fattori scatenanti la liquefazione nella pianura padana-emiliana

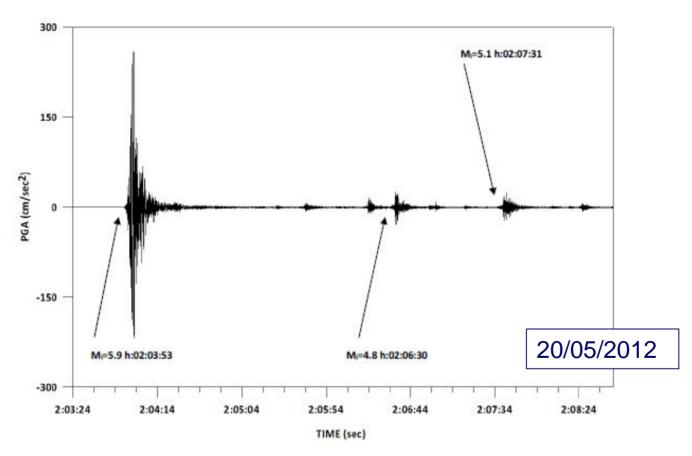
Azione sismica (fattori scatenanti)

Evento del 20/05/12 ore 02:03:53

1) Magnitudo

$$M = 5.9$$

2) Accelerazione orizz. max. PGA > 0.15g


3) Durata

$$d > 15-20 sec$$

$$d = 8.1 \text{ sec}$$

Il fattore durata non è verificato, ma

Fattori scatenanti la liquefazione nella pianura padana-emiliana aftershocks di intensità poco inferiore alla scossa principale, e molto ravvicinati

Il Rischio di liquefazione può essere valutato ricorrendo a tre categorie di metodi, in ordine di risorse impegnate crescenti:

- Metodi empirici (qualitativi o semi-quantitativi)
- Metodi semplificati (ingegneristici, quantitativi)
- Metodi dinamici (avanzati)

La scelta del metodo dipende dalle finalità dell'indagine (microzonazione sismica o progettazione) e dal livello di dettaglio che è richiesto

Metodi semplificati di stima del rischio di liquefazione

Analisi 1-D, condizioni free field (liquefazione ciclica)

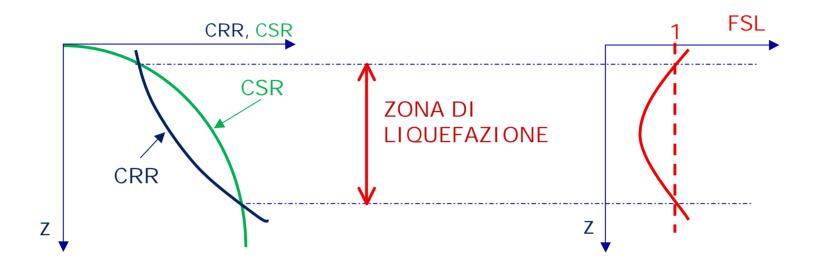
Stima del fattore di sicurezza nei confronti della liquefazione (FSL) al variare della profondità (z):

$$FSL(z) = \frac{CRR(z)}{CSR(z)}$$

CRR (z) = resistenza normalizzata del terreno alla liquefazione a profondità z (Cyclic Resistance Ratio)

CSR (z) = tensione ciclica normalizzata indotta dal terremoto a profondità z (Cyclic Stress Ratio)

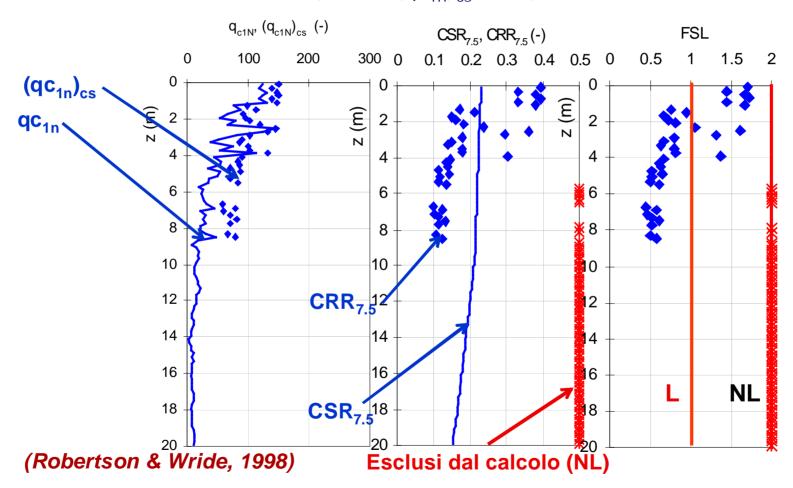
Il calcolo di FSL è limitato agli strati potenzialmente liquefacibili


$$z < 20 \, m$$

$$Z > Z_{W}$$

$$I_{c} < 2.6$$
,

$$(q_{c1n})_{cs} < 160$$



Nei metodi semplificati che utilizzano prove CPT

$$CRR = f(q_{c'} f_{s'} \sigma_{v0'} \sigma'_{v0})$$

CSR =
$$f(M, a_{max}/g, \sigma_{v0}, \sigma'_{v0}, r_{d}, MSF, K_{\sigma})$$

Il calcolo di FSL è escluso per gli strati giudicati non liquefacibili da un punto di vista fisico ($z>z_{cr}$, $z<z_{w}$), <u>litologico</u> (ad es. $I_{c}>2.6$) o <u>meccanico</u> (ad es. (qc_{1n})_{cs}>160).

Metodi semplificati

Rischio di liquefazione in corrispondenza di una verticale

Una volta valutato il fattore di sicurezza FSL nei confronti della liquefazione a varie profondità lungo una verticale è opportuno introdurre un indice sintetico per quantificare il rischio di liquefazione in corrispondenza dell'intera verticale

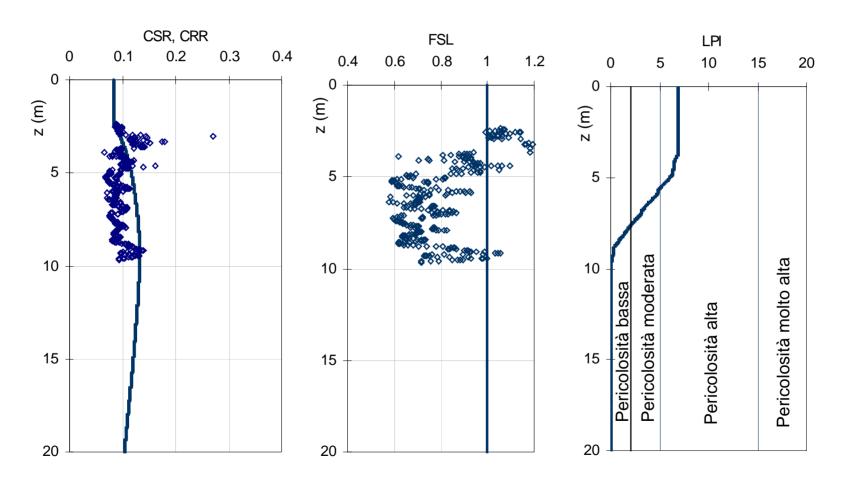
A tale scopo viene di norma utilizzato un:

<u>Indice del potenziale di liquefazione P</u>_L (*Iwasaki, 1978*) :

$$P_L = \int_0^{z_{crit}} F(z) \cdot w(z) \cdot dz$$

dove:

$$F(z)=0$$
 per $FSL > 1$; $F(z) = 1$ - FSL per $FSL < 1$
 $w(z) = 10-10 \cdot (z/z_{crit})$;

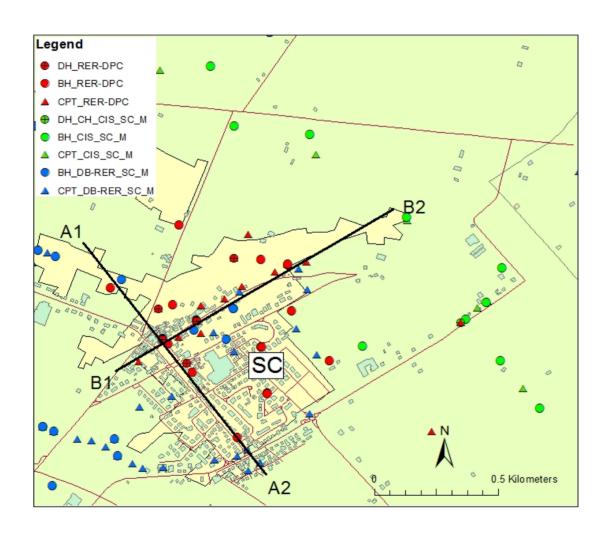

z_{crit} = profondità oltre la quale possono escludersi fenomeni di liquefazione (20m)

Indice del potenziale di liquefazione e livello di rischio associato

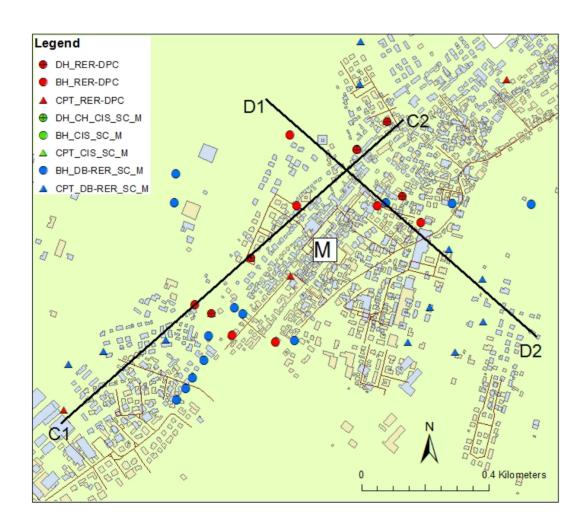
P _L	Rischio	
0	nullo	
0 < P _L • 2	basso	
2 < P _L • 5	moderato	
5 < P _L • 15 alto		
P _L > 15	molto alto	

Con riferimento ad una prova CPTu a San Carlo di esempio:

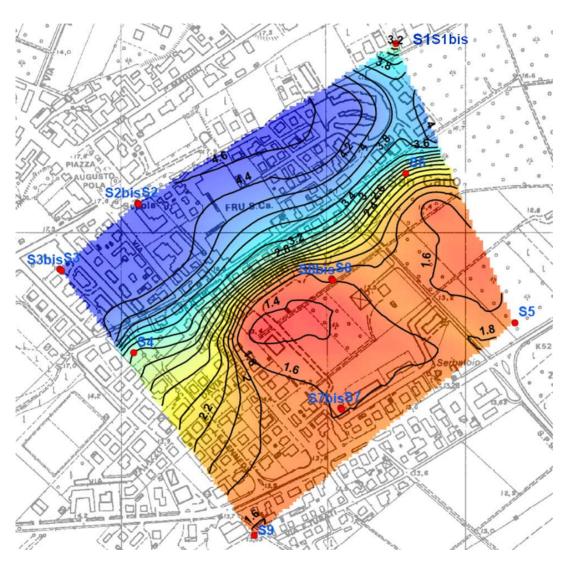
Numerosità, tipologia e provenienza delle indagini geotecniche in sito disponibili per i Comuni di Sant'Agostino e di Mirabello


	BH / Pozzi	CPT	DH
RER-DPC	28	22	10
RER-DB	152	182	
CIS	34	28	5

Legenda:

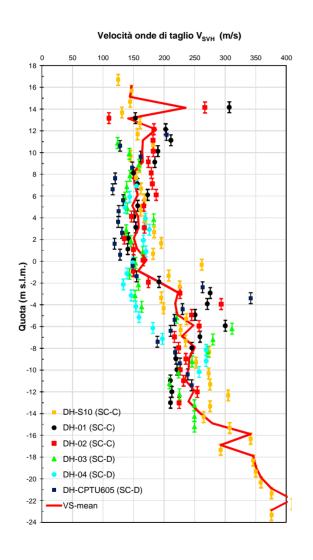

BH = Sondaggi stratigrafici e/o geotecnici

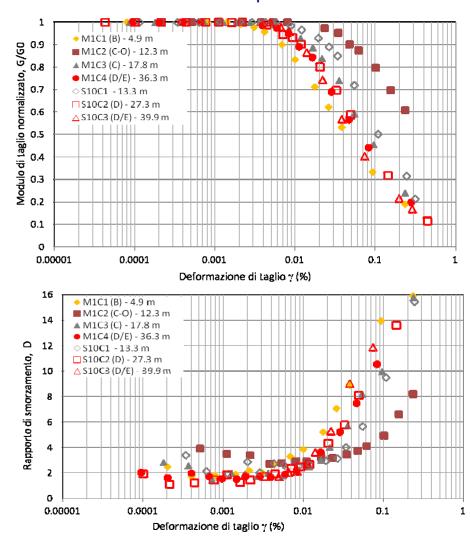
CPT = Prove penetrometriche statiche meccaniche, elettriche e con punta piezometrica


DH = Prove Down Hole e prove con cono sismico

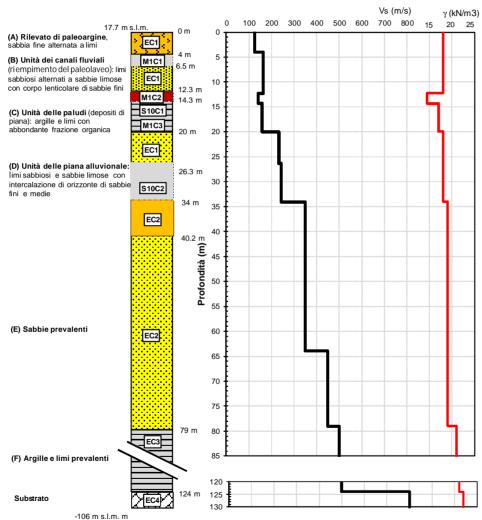
Ubicazione delle prove e delle sezioni di indagine per l'area di San Carlo

Ubicazione delle prove e delle sezioni di indagine per l'area di Mirabello

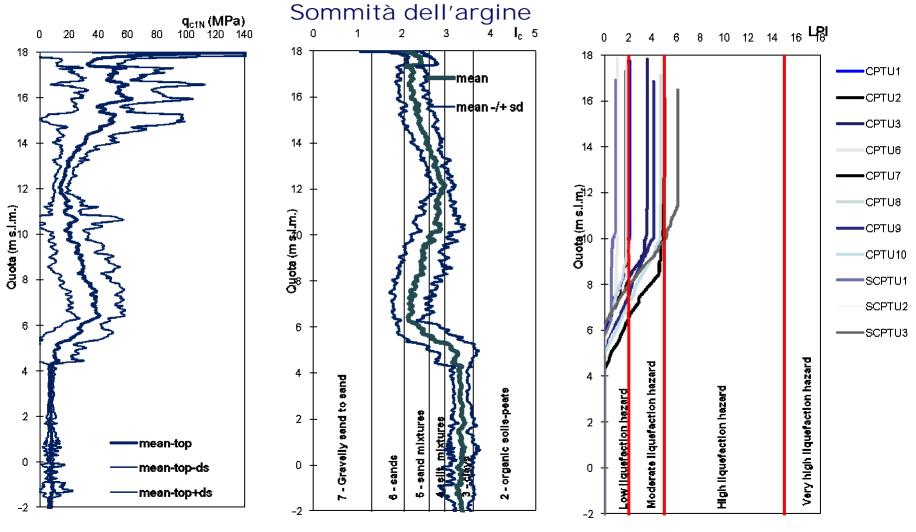


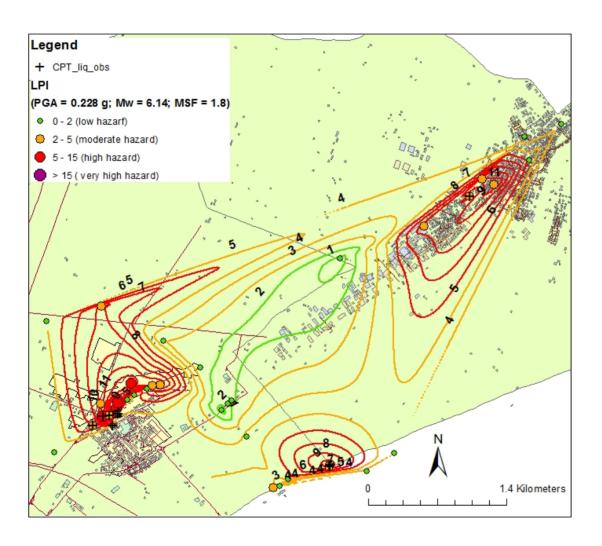

Monitoraggio della falda a San Carlo

Profondità da p.c. (8 giugno 2012)



Per l'analisi della risposta sismica locale


Per l'analisi della risposta sismica locale


$$a_g = 0.153 g$$
 $V_{S,30} = 180 \text{ m/s}$
 $CAT. = C/D$
 $S_S = 1.4/1.8$
 $FA_{(PGA)} = 1.4$
 $FA_{(HI)} = 2.6$

PGA=0.228 g; M=6.14; MSF=1.8

Carta di pericolosità di liquefazione ottenuta applicando il metodo di Robertson e Wride (PGA=0.228g) $M_w = 6.14$; MSF = 1.8) alle prove CPTu e SCPTu per l'area di San Carlo - Mirabello.

Grazie per l'attenzione