# Calcolo della pericolositá sismica

Marco Santulin

### Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Milano c/o OGS



### Nuovi studi sulla pericolosità sismica regionale

Bologna, **5 dicembre 2017** viale della Fiera, 8 - Sala "20 maggio 2012"



Nel presente lavoro è stata effettuata un'analisi probabilistica di pericolosità sismica, seguendo l'approccio di Cornell (1968), utilizzando il software Crisis 2012 (Ordaz *et al.*, 2012), allo scopo di calcolare le stime di pericolosità, in termini di PGA (g), per un periodo di ritorno di 475 anni, ottenute utilizzando la nuova proposta di zonazione per l'area emilio-romagnola.



2

Nel presente lavoro è stata effettuata un'analisi probabilistica di pericolosità sismica, seguendo l'approccio di Cornell (1968), utilizzando il software Crisis 2012 (Ordaz *et al.*, 2012), allo scopo di calcolare le stime di pericolosità, in termini di PGA (g), per un periodo di ritorno di 475 anni, ottenute utilizzando la nuova proposta di zonazione per l'area emilio-romagnola.



### Cfr nuova zonazione e faglie attive/potenzialmente attive





Zone: condizioni sismotettoniche omogenee. Meccanismo di rottura definito da:

- la geometria del piano di rottura (strike e dip),
- la cinematica della faglia (normale, inversa, trascorrente, o mista),
- la profondità ipocentrale ipotizzata (range),
- la massima magnitudo attesa, che coincide con la massima magnitudo stimata da dati storici.

| zone                              | geometria                           | meccanismo             | profondità (km) | M <sub>max</sub> |
|-----------------------------------|-------------------------------------|------------------------|-----------------|------------------|
| 907 mod                           |                                     | inverso                |                 |                  |
| Pieghe Emiliane                   | S-SSW/45                            | inverso                | 5-30            | 5.5              |
| 911mod                            |                                     | trascorrente           |                 |                  |
| Taro-Enza                         | NE-SW (S/45-60)                     | trascorrente (inverso) | 5-30            | 5.5              |
| Pieghe Ferraresi                  | S-SSW/45                            | inverso                | 5-15            | 6.1              |
| Nonantola-Budrio                  | S-SSW/15-30                         | inverso                | 15-35           | 5.5              |
| Basso Appennino emiliano-margine  | S/45-60                             | inverso                | 10-30           | 6                |
| Appennino emiliano                | N/75 (S/45-60)                      | normale (inverso)      | 5-10 (10-35)    | 5.5              |
| Reno-Setta                        | NNE-SSW (S/45-60)                   | trascorrente (inverso) | 5-15 (15-35)    | 5.5              |
| Basso Appennino romagnolo-margine | S/30-45                             | inverso                | 5-35            | 6.1              |
| Appennino romagnolo               | NE/70 (SSW/15-30)                   | normale (inverso)      | 3-10 (10-25)    | 6                |
| Savio-Marecchia                   | NNE-SSW (SSW/30)                    | trascorrente (inverso) | 5-15 (15-25)    | 6                |
| Garfagnana                        | NE/60-70(60%) SW/60-70(40%) (NE-SW) | normale (trascorrente) | 5-15 (10-20)    | 6.5 (5.1)        |
| Pistoia-Cerbaie                   | NE-SW (SW/60-70)                    | trascorrente (normal)  | 5-15            | 5.7              |
| Mugello                           | SSW/60-70(60%) NNE/60-70(40%)       | normale                | 5-15            | 6.3              |
| Firenze-Volterra                  | SW/60-70 (NE-SW)                    | normale (trascorrente) | 5-15            | 5.4              |
| Costa Toscana nord                | SW/60-70 (WSW/60-70)                | normale                | 5-15            | 5.9              |
| Costa Toscana-Lazio               | NE-SW                               | normale                | 5-15?           | 5.1              |
| Casentino - Alto Valdarno – Siena | NE-SW (SW/60-70?)                   | trascorrente (normale) | 5-15            | 5.8              |
| Amiata-Bolsena                    | WSW/60-70                           | normale                | 5-15            | 5.7              |
| Trasimeno                         | WSW/60-70                           | normale                | 5-15            | 5.0              |
| Umbria                            | SW/45-65(60%) ENE/45-65(40%)        | normale                | 5-15            | 6.7              |
| Marche                            | SW/60-70 (SW/15-30)                 | normale (inverso)      | 5-15 (15-25)    | 6.4              |
| 923mod                            | SW/50-70                            | normale                | 5-15            | 7.1              |
| 920mod                            |                                     | normale                |                 |                  |







Quando le differenze tra le nuove zone e quelle della ZS9 sono risultate minime, in termini di limiti geografici e caratteristiche sismotettoniche interne, i limiti e le definizioni adottati sono gli stessi delle zone ZS9.

Per alcune zone sono stati ritenuti possibili più meccanismi di rottura; in tali casi, quando le informazioni lo permettavano, sono state attribuite diverse stime percentuali di accadimento.



## I 5 passi di un'analisi probabilistica di pericolosità sismica

### The actual steps in PSHA computation

- 1) Definition of SZs geometry
- 2) SZs seismicity characterisation
- 3) Attenuation relation
- 4) Probability of ground motion exceedence
- 5) Probability of ground motion exceedence in T yrs







| La sismi   | icità è    | stata   |
|------------|------------|---------|
| modellata  | util       | izzando |
| una        | distri     | buzione |
| Gutenberg  | g –        | Richter |
| (GR) bas   | sata sı    | u tassi |
| calcolati  | Se         | guendo  |
| Slejko et  | al. (199   | 8), con |
| una mag    | nitudo     | minima  |
| variabile  | da         | una     |
| sorgente a | all'altra. |         |

La magnitudo massima per ciascuna zona è stata calcolata utilizzando l'algoritmo statistico di Kijko and Graham (1998).



| 8° - 1 | Δ  | B    | C    |            | A     | В     | С  | D  | E  | F  | G         | Н                   | I. I.    | J      | K        | L       | J      | K   |
|--------|----|------|------|------------|-------|-------|----|----|----|----|-----------|---------------------|----------|--------|----------|---------|--------|-----|
| 1      |    | Anno | Me ( | <u>-</u> 1 |       | Anno  | Me | Gi | Ho | Mi | Se        | AE                  | Lat      | Lon    | lo Ms    | a.      | DEPTH  | MAG |
| 21     | 1  | 778  |      | 308        | 286   | 1904  | 9  | 16 | 5  | 37 | 11        | KRALJEVICA          | 45.3     | 14.6   | 7        | 4.8 315 | 8.3    | 4.5 |
| 3      | 2  | 1065 | 3 3  | 7309       | 287   | 1904  | 10 | 9  | 6  | 41 |           | CLAUT               | 46.283   | 12.517 | 6        | 4.3 286 | 6.8    | 6.4 |
| 4      | 3  | 1000 |      | 310        | 50019 | 1904  | 10 | 9  | 6  | 41 |           | CLAUT               | 46.267   | 12.515 | 5        | 3.9 368 | 7.0    | 23  |
| 5      | 4  | 1117 | 1    | 3311       | 288   | 1904  | 11 | 10 | 17 | 9  |           | VRHNIKA HORJUL      | 46.017   | 14.25  | 5.5      | 4 824   | 6.1    | 4.1 |
| 6      | 5  | 1197 |      | 312        | 289   | 1905  | 2  | 3  | 19 | 28 |           | TRIGLAVSKO G. MT.   | 46.25    | 13.75  | 5.5      | 4 318   | 18.1   | 2.5 |
| 7      | 6  | 1222 | 12 3 | z=313      | 290   | 1905  | 5  | 23 | 13 | 13 | 34        | SKOCJAN BUCKA       | 45.917   | 15.317 | 7        | 4.8 493 | 4 5    | 2.8 |
| 8      | 7  | 1268 | 11   | 4314       | 291   | 1905  | 9  | 14 | 5  |    |           | TERME BRENNERO      | 47       | 11.5   | 5.5      | 4 292   | 5.6    | 1.9 |
| g      | 8  | 1276 | 7 3  | 315        | 292   | 1905  | 11 | 14 | 12 | 47 |           | BRESTANICA KRSKO    | 45.967   | 15.467 | 6.5      | 4.6 087 | 9.2    | 2.0 |
| 10     | g  | 1279 | 4    | 316        | 293   | 1906  | 4  | 7  | 17 | 53 |           | KAERNTEN            | 46.5     | 14.6   | 5.5      | 4 147   | 7.5    | 2.3 |
| 11     | 10 | 1280 |      | 317        | 294   | 1906  | 6  | 3  | 19 | 39 | 50        | TOLMEZZO            | 46.4     | 13     | 6        | 4.3 319 | 2.3    | 2.4 |
| 12     | 11 | 1284 | 1    | 17318      | 295   | 1906  | 6  | 16 | 11 | 17 | 23        | TRZIN CRNUCE LJUBI  | 46.1     | 14 567 | 6        | 4 1 325 | 10.6   | 21  |
| 13     | 12 | 1295 | 9    | 319        | 296   | 1907  | 4  | 20 | 13 | 25 |           | GRAN ZEBRU'         | 46.512   | 10.482 | 6        | 4 093   | 20.5   | 2.3 |
| 14     | 13 | 1303 | 3 1  | 320        | 20002 | 1907  | 4  | 20 | 13 | 24 | 38,12     |                     | 46.54    | 11.03  | 0.7      | 4 174   | 3.6    | 2.7 |
| 15     | 14 | 1323 |      | 321        | 297   | 1907  | 4  | 25 | 4  | 52 |           | BOVOLONE            | 45.318   | 11.073 | 6        | 4.5 077 | 13.9   | 2.1 |
| 16     | 15 | 1334 | 12   | ⊿322       | 20003 | 1907  | 4  | 25 | 4  | 52 | 18.38     |                     | 45.1     | 11.07  | 0.2      | 4.5 596 | 14.7   | 2.5 |
| 17     | 16 | 1348 | 1 1  | 7≠ 323     | 298   | 1907  | 5  | 10 | 4  | 25 |           | LJUBLJANA DOB DOMZ. | 46.117   | 14.6   | 6        | 4.3 308 | 18.1   | 1.8 |
| 18     | 17 | 1358 |      | 324        | 299   | 1907  | 7  | 2  | 2  | 32 |           | ARTA                | 46.433   | 13.067 | 6        | 4.4 739 | 12.7   | 1.8 |
| 19     | 18 | 1364 | 8    | 325        | 20004 | 1907  | 7  | 2  | 1  | 31 | 50.12     |                     | 46.48    | 13.06  | 28,8     | 4.4 646 | 20.1   | 2.4 |
| 20     | 10 | 1365 | 3    | ⊿326       | 300   | 1908  | 3  | 1  | 14 | 1  |           | PIVKA POSTOJNA      | 45.667   | 14.2   | 5.5      | 4 428   | 10.0   | 2.4 |
| 20     | 20 | 1365 | q r  | 327        | 301   | 1908  | 3  | 15 | 7  | 50 |           | CRESPADORO          | 45.623   | 11.207 | 6        | 4.7 341 | 0.1    | 4.3 |
| 22     | 21 | 1383 | 7 /  | 328        | 302   | 1908  | 5  | 12 | 6  | 9  |           | STEIERMARK          | 47       | 14.4   | 5.5      | 4 966   | 3.8    | 3.2 |
| 22     | 27 | 1389 | 8 1  | 329        | 303   | 1908  | 7  | 10 | 2  | 13 | 35        | Carnia              | 46.47    | 13.18  | 7.5      | 5 632   | 16.2   | 2.4 |
| 20     | 22 | 1302 | 1 1  | 330        | 20005 | 1908  | 7  | 10 | 2  | 13 | 41.17     |                     | 46.4     | 13.16  | 7        | 5 292   | 25.4   | 1.0 |
| 25     | 20 | 1401 | 6 1  | 331        | 304   | 1908  | 11 | 20 | 4  | 3  | 36        | CELJE TRNOVLJE      | 46.25    | 15.267 | 6.5      | 4.6 324 | 17.3   | 2.0 |
| 26     | 25 | 1407 |      | 332        | 305   | 1908  | 12 | 18 | 6  | 6  |           | TIROL               | 47       | 12.5   | 5.5      | 4 074   | 13.8   | 1.7 |
| 20     | 26 | 1403 | 1 -  | 17 333     | 306   | 1909  | 2  | 17 | 17 | 43 |           | BUCKA PRI KRSKEM    | 45.917   | 15.35  | 6        | 4.3 262 | 18.9   | 2.4 |
| 28     | 20 | 1400 | 2    | 1334       | 307   | 1909  | 11 | 2  | 3  | 44 |           | RIJEKA              | 45.2     | 14.2   | 6        | 4.3 152 | 18.7   | 1.9 |
| 29     | 28 | 1406 | 5 3  | 335        | 308   | 1910  | 4  | 5  | 19 | 20 |           | RIVIGNANO           | 45.85    | 13     | 5.5      | 4 267   | 16.7   | 2.0 |
| 30     | 29 | 1410 | 6    | 336        | 309   | 1911  | 2  | 8  | 2  | 54 | 38        | DOGNA               | 46.5     | 13.3   | 5.5      | 4.4 237 | 0.1    | 2.0 |
| 31     | 30 | 1411 | 7    | 337        | 310   | 1911  | 5  | 13 | 3  | 45 |           | GOZD                | 45.9     | 13.983 | 5        | 4 797   | 8.4    | 2.1 |
| 32     | 31 | 1445 | 3 3  | 338        | 311   | 1911  | 11 | 11 | 19 | 9  |           | TIROL               | 46.8     | 12.3   | 5.5      | 4 263   | 15.6   | 2.0 |
| 33     | 32 | 1465 | 4    | - 339      | 312   | 1912  | 6  | 20 | 1  | 50 |           | MOKRONOG            | 45.9     | 15.2   | 6        | 4.3 200 | 19.0   | 2.0 |
| 34     | 33 | 1471 |      | 340        | 313   | 1912  | 8  | 5  | 10 | 33 | 32        | PUOS                | 46.15    | 12.4   | 6        | 4 661   | 10.4   | 1.0 |
| 35     | 34 | 1472 | 5 -  | 14 341     | 50020 | 1912  | 8  | 5  | 10 | 33 |           | PUOS                | 46.105   | 12.315 | 5        | 3.9 971 | 10.5   | 2.2 |
| 36     | 35 | 1485 | q    | 342        | 314   | 1913  | 5  | 20 | 16 | 15 | 9         | ILIRSKA BISTRICA    | 45.517   | 14.367 | 7        | 4.8 087 | 4.5    | 2.2 |
| 37     | 36 | 1400 | 1 1  | 343        | 315   | 1914  | 2  | 11 | 0  | 22 | 43        | PODR. PIVKA REKA    | 45.617   | 14.167 | 5.5      | 4 070   | 30.1   | 2.2 |
| 38     | 37 | 1/03 | 8 1  | 344        | 316   | 1914  | 3  | 24 | 9  | 18 | 53        | METLIKA DRASICI     | 4        |        |          |         | 2      | 2.4 |
| 39     | 38 | 1400 | 0 2  | -1015      | 047   | 1015  | 2  | 22 | 0  | 37 | 7         | NOVO MESTO PODGRAD  |          | italog | jo strun | nenta   | le: }  | 2.0 |
| 40     | 20 | Ca   | ata  | loac       | sto   | rico: | 3  | 15 | 21 | 55 | 38        | ILIRSKA BISTRICA    | <b>C</b> | 21 /10 | 01 2001  | 1       | 2      | 2.0 |
| 40     | 40 |      |      |            |       |       | 8  | 25 | 7  | 30 |           | NOVO MESTO PODGRAD  |          | 51 (19 | 01-2001  | )       | )<br>7 | 2.0 |
| 42     | 41 | CF   | ווי  | 11         |       |       | 1  | 2  | 15 | 10 |           | METLIKA             | 4 lei    | de (2  | 002-201  | 3)      | 7      | 2.7 |
| 42     | 41 |      |      |            | ~~ .  |       | 2  | 8  | 2  | 33 | 5,000,000 | LJUBLJANA           | 131      |        |          | ~       |        | 1.0 |
|        |    |      | GG   | 350        | 322   | 1916  | 3  | 12 | 3  | 23 | 59        | NOVI VINODOLSK      | 45.2     | 14.8   | 8        | 5.4     |        |     |



Sono necessarie alcune operazioni preliminari alla estrazione dei terremoti di competenza delle varie sorgenti: l'eliminazione degli eventi dipendenti (declustering dei foreshocks e aftershocks) e l'analisi di completezza per le varie classi di magnitudo.

In questo lavoro, l'analisi della completezza è stata fatta controllando la stabilità del numero di terremoti nel tempo, per ciascuna classe di magnitudo.

La stima corretta dei tassi annuali è estremamente importante per evitare che le classi di bassa magnitudo, scarsamente documentate in passato, risultino sottovalutate.





## I 5 passi di un'analisi probabilistica di pericolosità sismica

# The actual steps in PSHA computation

- 1) Definition of SZs geometry
- 2) SZs seismicity characterisation
- 3) Attenuation relation
- 4) Probability of ground motion exceedence
- 5) Probability of ground motion exceedence in T yrs



13



Come modello di attenuazione è stata selezionata la Cauzzi et al. 2014, per distanza da rottura di faglia e definita per differenti ambienti tettonici.





A seguito del lavoro di Cauzzi e Faccioli (2008), sono state sviluppate una serie di relazioni di attenuazione basate su dati accelerometrici globali ben controllati. Nelle relazioni di Faccioli et al. (2010) e Cauzzi et al. (2014) un termine di saturazione della distanza dipendente dalla magnitudo modella l'attenuazione nel campo vicino. L'ultima versione di questo modello di attenuazione (Cauzzi et al. 2014, CAU in figura) è stata selezionata per modellare l'attenuazione nel presente studio, perché fornisce una formulazione per la distanza di rottura di faglia che, insieme alla distanza ipocentrale, sembrano opportune per un dell'attenuazione, corretto calcolo specialmente nel caso di sorgenti con profondità variabili (piani inclinati), è robusta ed è definita per differenti ambienti tettonici.

## I 5 passi di un'analisi probabilistica di pericolosità sismica

### The actual steps in PSHA computation

- 1) Definition of SZs geometry
- 2) SZs seismicity characterisation
- 3) Attenuation relation
- 4) Probability of ground motion exceedence
- 5) Probability of ground motion exceedence in T yrs





16



PSHA [PGA (g), T=475anni]

- 0.35

calcolata considerando superfici **PIANE** e relazione di attenuazione C&F (Cauzzi and Faccioli, 2008) DIFFERENZIATA per meccanismo di faglia

calcolata considerando superfici **INCLINATE** e relazione di attenuazione C&F (Cauzzi and Faccioli, 2008) **DIFFERENZIATA** per meccanismo di faglia







## Superfici INCLINATE SEMPLIFICATE, definiti PIANI SISMOGENETICI,

costruiti basandoci sulla geometria della zona (es: S-SSW 45)

| New zones        | Geometry             | Fault<br>mechanism      | Depth<br>(km) | M <sub>max</sub> |  |
|------------------|----------------------|-------------------------|---------------|------------------|--|
| Emilia Folds     | S-SSW/45             | Thrust                  | 5-30          | 5.5              |  |
| Taro-Enza        | NE-SW<br>(S/45°-60°) | Strike-slip<br>(thrust) | 5-30          | 5.5              |  |
| Ferrara Folds    | S-SSW/45             | Thrust                  | 5-15          | 6.1              |  |
| Nonantola-Budrio | S-SSW/15°-30°        | Thrust                  | 15-35         | 5.5              |  |





### Geometria zona complessa

| Pieghe Emiliane  | S-SSW/45 | Thrust | 5-30  | 5.5 | Geometria complessa |
|------------------|----------|--------|-------|-----|---------------------|
| Pieghe Ferraresi | S-SSW/45 | Thrust | 5-15  | 6.1 | Zona molto estesa   |
| Marche           | S/30     | Thrust | 10-35 | 6.4 | Zona molto estesa   |







## Superfici INCLINATE ARTICOLATE in più PIANI SISMOGENETICI

raffiguranti le famiglie di faglie in essi comprese, sintetiche o antitetiche







PSHA [PGA (g), T=475anni] calcolata considerando superfici INCLINATE e relazione di attenuazione C&F (Cauzzi and Faccioli, 2008) DIFFERENZIATA per meccanismo di faglia

calcolata considerando superfici INCLINATE ARTICOLATE e relazione di attenuazione C&F (Cauzzi and Faccioli, 2008) DIFFERENZIATA per meccanismo di faglia New zonation PGA (g) 0 - 0.025 0.025 - 0.05 0.05 - 0.075 0.075 - 0.1

0.125 - 0.18

12 - 0.25







PGA calcolata con la nuova zonazione nella versione con i piani superficiali e orizzontali con periodi di ritorno di: a) 101 anni; b) 475 anni; c) 950 anni; d) 1950 anni.



I valori di pericolosità più alti sono concentrati nella parte settentrionale degli Appennini. Più precisamente, la PGA più elevata si riscontra nella zona dell'Appennino Romagnolo (n. 13), e valori di scuotimento leggermente più bassi per l'Appennino Emiliano e la Garfagnana (n. 7 e 8). Una PGA più elevata è stimata anche per una vasta area dell'Appennino Centrale (zone Umbria e Abruzzo, n. 21 e 25). La dimensione dell'area con il valore massimo di PGA attesa, aumenta fino a coprire la zona Mugello quando viene considerato un PR maggiore o uguale a 475 anni.



PGA calcolata con la nuova zonazione nella versione con i piani inclinati con periodo di ritorno di: a) 101 anni; b) 475 anni; c) 950 anni; d) 1950 anni.



Anche in questo caso le stime massime di PGA sono lungo il margine settentrionale dell'Appennino, nella ZS Appenino Romagnolo (n. 13). Verso NW, nella ZS Appennino Emiliano e a SE nella ZS Savio-Marecchia (n. 7 e n. 17) si notano valori piuttosto alti di PGA. Inoltre, le aree adiacenti a quelle con elevata PGA (Garfagnana, Margine Romagnolo e Pieghe Ferraresi, n. 8, 12, e 3) e quelle dell'Appennino centrale più a sud (zone Umbria e Appennino abruzzese, n. 21 e 25). I valori minimi si trovano nelle zone Firenze-Volterra, Litorale tosco-laziale e Trasimeno (n. 15,



Il confronto tra i risultati ottenuti considerando la classica zonazione 2D e quelli ottenuti tramite la geometria 3D mostra che le aree a maggior scuotimento atteso rimangono le stesse, ma i piani sismogenici inclinati determinano uno scuotimento maggiore e più localizzato. Infatti, l'uso dei piani, anche numerosi in qualche zona (v. ad esempio la zona n. 21), produce una definizione più dettagliata della stima del moto del suolo e, di conseguenza, una serie di aree di dimensione limitata caratterizzate da elevata PGA.





Abbiamo fatto un confronto tra i valori calcolati per le zone 2D e quelli della mappa di pericolosità sismica italiana MPS04 (Gruppo di Lavoro, 2004; Stucchi et al., 2011), basati sulla più recente zonazione sismogenica nazionale ZS9 (Meletti et al., 2008), che rappresenta le stime ufficiali delle norme tecniche delle costruzioni, per un PR di 475 anni. Un confronto rigoroso sull'influenza della geometria della zonazione, in realtá, andrebbe fatto non solo in termini di sorgenti piane e con cinematica delle faglie differenziate, ma anche considerando lo stesso catalogo di terremoti e lo stesso modello di attenuazione.



La mappa di scuotimento atteso per un PR di 475 anni, calcolata con la nuova zonazione sismogenica, risulta molto più articolata rispetto a quella della mappa MPS04 perché con zone più piccole (legate anche alla presenza di nuove zone trasversali con andamento SW-NE, non presenti nella zonazione ZS9, che interrompono l'andamento appenninico, NW-SE) si ottengono delle concentrazioni di scuotimento in aree limitate. Nella mappa MPS04 la maggior pericolosità si concentra nell'Appennino centrale (corrispondente all'incirca alla zona Appennino Abruzzese della nuova zonazione, n. 25), mentre nella mappa del presente studio la maggior pericolosità risulta, invece, concentrata nell'Appennino settentrionale (zona Appenino Romagnolo, n. 13), con valori simili di PGA.



Un ulteriore confronto è stato eseguito con la mappa europea di pericolosità sismica sviluppata nell'ambito del progetto SHARE (Giardini et al., 2013) che utilizza un albero logico molto articolato, considerando vari parametri, tra i quali diverse zonazioni e varie relazioni di attenuazione.



La mappa risultante mostra una vasta area che copre gran parte della regione Emilia-Romagna con una stima di PGA, compresa tra 0,2 e 0,3 g. Le differenze tra la mappa qui presentata e quella del progetto SHARE sono riscontrabili in diversi settori dell'area di studio, e le aree con i valori più alti di PGA divergono leggermente. Vale la pena notare che nella mappa di SHARE la pericolosità più alta si riferisce all'Appennino centrale, mentre la nuova mappa qui presentata prevede che i maggiori scuotimenti si verifichino nell'Appennino settentrionale.



### **CONCLUDENDO:**

L'applicazione nelle stime di pericolosità sismica della nuova zonazione sismogenica 3D proposta per l'Appennino settentrionale rappresenta, a nostro avviso, un passo in avanti nella modellazione delle sorgenti sismogeniche. Le sorgenti inclinate adottate, e definiti come piani sismogenici, sono più dettagliate rispetto alle comuni superfici orizzontali (zone sismogenetiche), anche se più approssimative rispetto alle singole faglie. Questo permette di superare il dilemma per quanto riguarda l'applicabilità del modello di terremoto caratteristico per il contesto tettonico italiano, in quanto il modello di sismicità GR risulta più appropriato a caratterizzare, all'interno di ogni sorgente, la presenza di diverse faglie anche con diversa cinematica.

Le principali novitá che hanno inciso sui risultati sono:

- la suddivisione di alcune zone di ZS9 molto ampie [ad esempio le zone 912, 915, 916, 921 di Meletti et al. (2008)], che a nostro parere includono strutture sismogeniche con differente geometria e meccanismi di rottura;

- l'introduzione di nuove zone sismogeniche, comprendenti aree finora non considerate sismogeniche, come ad esempio alcune aree della Pianura Padana centrale e della costa tirrenica;

- l'introduzione di zone trasversali all'asse della catena, motivate dalla presenza di strutture quaternarie orientate circa NE-SW, con componente trascorrente, che deformano le strutture appenniniche.

Le mappe dell'Appennino settentrionale così ottenute mostrano l'alto livello di pericolosità lungo la catena appenninica, dove lo scuotimento più elevato rimane localizzato nelle zone Appennino Romagnolo e in parte del Mugello.







