STRUCTURAL SAFETY Course code: 72785

Lesson 14: Structural Reliability Assessment

Academic year: 2016/2017

Tomaso Trombetti – Structural Safety

Reliability Assessment

Tomaso Trombetti – Structural Safety

Uncertainties in Reliability Assessment

- Phenomenological uncertainty
- Decision uncertainty
- Modelling uncertainty
- Prediction uncertainty
- Physical uncertainty
- Statistical uncertainty
- Uncertainties due to human factors

Human error

Error type	Human variability V	Human error E	Gross human error G	
Failure process	In a mode of behaviour structure was designed	against which the	In a mode of behaviour agai which the structure was not designed	
Mechanism of error	One or more errors during design, documentation, construction and/or use of the structure		Engineer's ignorance or oversight of fundamental behaviour. Profession's ignorance of fundamental	
Possibility of analytic representation	High	Medium	behaviour Low	

Human error

Cause	%
Inadequate appreciation of loading conditions or structural behaviour	43
Mistakes in drawings or calculations	7
Inadequate information in contract documents or instructions	4
Contravention of requirements in contract documents or instructions	9
Inadequate execution of erection procedure	13
Unforeseeable misuse, abuse and/or sabotage, catastrophe, deterioration	7
Random variation in loading, structure, materials, workmanship etc.	10
Others	7

Human error

Factor		%
Ignorance, carelessness, negligence		35
Forgetfulness, errors, mistakes	Sec. 13	0
Reliance upon others without sufficient control		,
Underestimation of influences		6
Insufficient knowledge		13
Objectively unknown situations (unimaginable 2)		25
Remaining		4
Adapted from Matousek and Schneider (1976)		8

Modelling of human error and intervention

Figure 2.5 Modification of resistance probability density function for human error and human intervention effects. *From Melchers*

Criteria for Risk Acceptability

Activity	Approximate death rate ^a (× 10 ⁻⁹ deaths/h	Typical exposure ^b (h/year)	Typical risk of death (× 10 ⁻⁶ /year)
	exposure)		(rounded)
Alpine climbing	30 000-40 000	50	1500-2000
Boating	1500	80	120
Swimming	3500	50	170
Cigarette smoking	2500	400	1000
Air travel	1200	20	24
Car travel	700	300	200
Train travel	80	200	15
Coal mining (UK)	210	1500	300
Construction work	70-200	2200	150-440
Manufacturing	20	2000	40
Building fires ^C	1-3	8000	8-24
Structural failures ^C	0.02	6000	0.1

 Table 2.5
 Selected risks in society (indicative)

Criteria for Risk Acceptability

	Table 2.6 Broad indicators of tolerable risks
Risk of death person per year.	per Characteristic response
10-3	uncommon accidents; immediate action is taken to reduce the hazard
10-4	people spend money, especially public money to control the hazard (e.g. traffic signs, police, laws);
10-5	mothers warn their children of the hazard (e.g. fire, drowning, firearms, poisons), also air travel avoidance
10-6	not of great concern to average person; aware of hazard, but not of personal nature; act of God.

Criteria for Risk Acceptability

Structure type	Data cover	Number of structures (estimated)	Average life (years)	Estimated lifetime P_f
Anartment floors	Denmark	5 × 10 ⁶	30	3×10^{-7}
Mixed housing	the Netherlands (1967–1968)	2.5 × 10 ⁶	-	5 × 10 ⁻⁴
Controlled domestic housing	Australia (New South Wales)	145 500	-	10 ⁻⁵
Mixed housing	Canada	5 × 10 ⁶	50	10-3
Engineered structures	Canada	-	-	10 ⁻⁴

Table 2.7 Typical 'collapse' failure rates for building structures

Sources: Allen, 1981a; Ingles, 1979; Melchers, 1979.

Criteria for Risk Acceptability

Bridge type	Data cover	Number of structures (estimated)	Average life (years)	Estimated lifetime P _f
Steel railway	USA (<1900)	*	40	10-3
Large suspension	World (1900- 1960)	55	40	3×10^{-3}
Cantilever and suspended span	USA	-	-	1.5×10^{-5}
Bridges	USA	-		10-3
Bridges	Australia	_	-	10-5

Load and Load Effect Modelling

Tomaso Trombetti – Structural Safety

Wind loading

• The typical average values and the correlated characteristic ones are taken from annual maximum means or 50-years maximum means

	Annual maximum			50 - year maximum		
	Mean speed		Coefficient Mean		peed	Coefficient
	(m/s)	(miles/h)	of variation	(m/s)	(miles/h)	of variation
USA ^a	15.5	(34.7)	0.12-0.17	24.1	(18.6)	0.11-0.14
Australia ^b	14.9	(33.3)	0.12	24.7	(55.2)	0.12
Cardington, UK ^c	15.5	(34.7)	0.24	23	(≈52)	0.12

 Table 7.1 Typical average values of mean hourly wind speed data

^aConverted from 'fastest-mile' wind records [Simiu and Filliben, 1980].

^bConverted from '3-sec.' wind records [Pham et al., 1983].

^cConverted from '3-sec.' wind records [Shellard, 1958]

Mean hourly speeds ≈ 0.77 x fastest-mile speeds

Mean hourly speeds $\approx (1/1.55 - 1/1.7) \times 3$ -sec. gust speeds.

Structural Safety

Floor loading

- Live loading on floors must be modelled, since long-term records are not available, and since there are many possible parameters which may influence it.
- Originally, data used in design consisted of estimates of dense crowd loading.
- For multi-storey buildings it is unlikely that all floors will be subjected to crowd loading at the same time in corresponding locations.

Floor loading: area dependence effect

Floor loading: area dependence effect

Floor loading: area dependence effect

Floor loading: area dependence effect

Distribution of equivalent uniformly distributed load

Floor loading: area dependence effect

- Table 7.5 Typical basic loads, modelling parameters and load combinations for office floor loadings
- Table 7.5 Typical control reproduced in part from Corotis and Doshi, 1977; Chalk and Corotis, for $A_1 = 18.6 \text{ m}^2$ floor area [Reproduced in part from Corotis and Doshi, 1977; Chalk and Corotis, $A_j = 18.0$ m Horizontal Angle (1977; Chaik and Cor 1980; and Harris *et al.*, 1981 by permission of the American Society of Civil Engineers)

Basic data			
• Typical influence area	A_{I}	18.6 m ²	(200 ft^2)
• Typical design life	Т	50 years	(200 ft)
Instantaneous uniformly distributed sustained load	L		
(arbitrary-point-in-time load)			
• Mean	μ_L	0.53 kPa	(10.9 lbf/ft^2)
Standard deviation	$\sigma_{_L}$	0.37 kPa	(7.6lbf/ftt^2)
 Average number of occupancy changes per year 	vo	0.125	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
• Expected occupancy duration (years)	$E(\tau) = 1 / v_o$	8	
Instantaneous uniformly distributed extraordinary	L _{e1}		
nve load			
• Standard deviation	μ_{e1}	0.39 kPa	$(8 lbf/ft^2)$
Average number of entered line View is	$\sigma_{_{el}}$	0.40 kPa	(8.2 lbf/ft^2)
occurrences per year	v _e	1	
Theoretically derived values*			
Maximum sustained load	Ls		
• Mean	μ_{L_s}	1.21 kPa	(24.9 lbf/ft ²)
• Standard deviation	$\sigma_{\scriptscriptstyle L_{\!S}}$	0.33 kPa	(6.9 lbf/ft ²)
Lifetime maximum extraordinary load	L,		
Mean	μ_{L}	1.79 kPa	(36.7 lbf/ft ²)
Standard deviation	σ_{L_e}	0.41 kPa	(8.4 lbf/ft ²)
imploted and the second			
Case I I I I I I I I I I I I I I I I I I I	Mean	2.50 kPa	(51.2 lbf/ft ²)
Case II $L_s + L_{el}$ (occurrence rate, 50%)	Mean	2.40 kPa	(49.1 lbf/ft ²)
Case II $L + L_e$ (occurrence rate, 41%)	Mean	2.79 kPa	(57.2 lbf/ft ²)
Lase III $L_s + L_e$ (occurrence rate, 17%)	Mean	2.15 kPa	(44.2 lbf/ft ²)
Other (occurrence rate, 12%)	Mean	2.10 Kl u	· · · · · · · · · · · · · · · · · · ·

From Melchers

 $1 \text{kPa} \equiv 1 \text{kN} / \text{m}^2 \approx 20.5 \text{ lbf} / \text{ft}^2$.

* simulated values agree reasonably closely.