CONVENZIONE

"ANALISI E VALUTAZIONE DEI DATI DI SALINITÀ IN RELAZIONE AL METODO DI MISURA DI LABORATORIO E DI CAMPAGNA E ALLA DEFINIZIONE DI FUNZIONI DI TRASFERIMENTO PER LA STIMA DELLA DENSITÀ APPARENTE DEI SUOLI A TESSITURA GROSSOLANA"

ANALISI STATISTICA E GEOSTATISTICA DEI DATI DI ELETTROCONDUCIBILITÀ DEI SUOLI PER LA DESCRIZIONE IN 1^A APPROSSIMAZIONE, DELLA DISTRIBUZIONE GEOGRAFICA DELLA SALINITÀ NEI SUOLI DELLA PIANURA EMILIANO-ROMAGNOLA

A cura di Fabrizio Ungaro e Costanza Calzolari

CNR IRPI ISTITUTO DI RICERCA PER LA PROTEZIONE IDROGEOLOGICA U.O.S. di FIRENZE - PEDOLOGIA APPLICATA Via Madonna del Piano 10, I-50019 Sesto F.no - Firenze

Introduzione

Il lavoro oggetto di questo report completa quello dei report 1.1 e 1.3 presentati a compimento della prima parte del programma di lavoro oggetto della convenzione. Il report 1.3, in particolare, riportava i risultati di uno studio su possibili criteri alternativi per la stima della conducibilità elettrica EC_e (estratto a saturazione) a partire da dati di salinità disponibili nella banca dati del suolo del Servizio Geologico, Sismico e dei Suoli determinati con il metodo EC_{1:5} e EC_{1:2.5} (estratto a rapporto acqua/suolo 5:1 e 2.5:1 rispettivamente) di dati pre-esistenti e di recente acquisizione (2010). L'analisi e l'elaborazione dei dati ha permesso di testare differenti coefficienti di trasformazione reperiti in letteratura o determinati a partire dalle misure disponibili in banca dati.

Il presente rapporto è relativo ad una prima approssimazione della distribuzione geografica della salinità dei suoli della pianura emiliano-romagnola. I valori di EC_e sono stati stimati con gli algoritmi definiti per diversi gruppi tessiturali nella precedente fase dello studio.

Il procedimento di spazializzazione si è articolato nelle seguenti fasi:

- 1. Analisi dei dati, definizioni di criteri di partizione del territorio in aree omogenee;
- 2. Trasformazione dei dati e definizione del modello spaziale;
- 3. Stima via simulazioni sequenziali gaussiane,
- Redazione delle carte e definizione della loro qualità

1. Analisi dei dati, definizioni di criteri di partizione del territorio in aree omogenee

I dati di EC forniti dal Servizio geologico Sismico e dei Suoli sono relativi a due distinti intervalli di profondità: 0.50 cm e 50-100 cm. Si tratta di dati di EC_e stimata da dati di EC_{1:5} o EC_{1:2.5} utilizzando gli algoritmi sviluppati nell'ambito della presente convenzione. Il data set contiene 1277 osservazioni relative all'intervallo di profondità 0-50 cm e 1289 osservazioni relative all'intervallo di profondità 50-100 cm; le statistiche descrittive sono riportate nella tabella seguente (Tab. 1).

	Profondità	Means dS/m	N	Std.Dev. dS/m	Minimum dS/m	Q0.25 dS/m	Median dS/m	Q0.75 dS/m	Maximum dS/m
Ī	0-50 cm	1.72	1277	5.39	0.003	0.816	1.14	1.301	121.40
	50-100 cm	2.09	1289	5.08	0.009	0.926	1.15	1.415	121.53

Tabella 1

Per entrambe le profondità i dati mostrano distribuzioni marcatamente non normali, fortemente asimmetriche (coefficiente di skewness pari a 17,8 e 13.3 rispettivamente per EC_e 0-50 cm e Ec_e 0-100 cm), con il 50% delle osservazioni caratterizzate da valore inferiore a quello medio e un coefficiente di variabilità prossimo al 315% per EC_e 0-50 cm e al 245% per Ec_e 0-100 cm; l'errore standard della media è piuttosto contenuto, con un intervallo di confidenza del 95% compreso tra 1.42 e 2.0 dS/m in superficie, e tra 1.80 e 2.35 dS/m in profondità. Le statistiche su finestre mobili di 10 km x 10 km e con il 50% di sovrapposizione rilevano un chiaro effetto proporzionale (R² = 0.84 per EC_e 0-50 cm e 0. 72 per Ec_e 0-100 cm), ossia una relazione di proporzionalità diretta tra valore medio e deviazione standard (Isaaks and Shrivastava, 1989). In questo caso il trattamento dei dati da un punto di vista geostatistico presuppone una qualche trasformazione dei dati che stabilizzi la varianza e renda gli errori indipendenti dal valore delle osservazioni. Tuttavia, prima di trasformare i dati è opportuno valutare se la carta dei suoli o l'uso del suolo possano in qualche modo supportare la procedura di stima geostatistica fornendo un modello della

struttura spaziale in termini di "trend". Al fine di individuare aree omogenee i cui valori medi possano in qualche modo descrivere il trend della distribuzione spaziale della salinità, considerata anche la densità delle osservazioni, si è ritenuto di testare l'efficacia delle delineazioni della carta 1:1,000,000 che individua 12 ambienti (figura 1). Nelle tabelle 2 e 3 sono riportate le statistiche descrittive dei valori di Ece alle due profondità nelle diverse unità pedo-ambientali della carta.

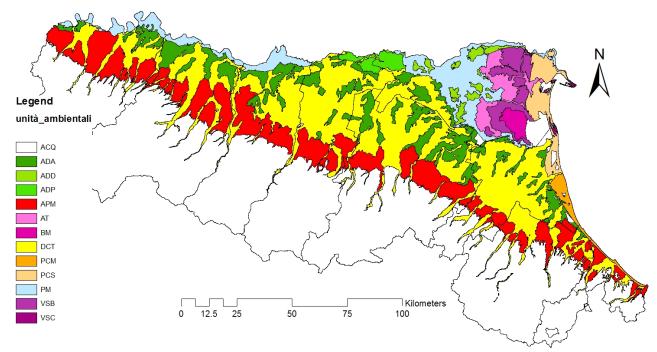


Figura 1. Ambienti pedologici della pianura emiliano-romagnola

Ambiente	Media	N	Dev. Stand.	Minimo	Mediana	Massimo
ADA	0.934	250	0.420	0.256	0.855	3.927
ADD	0.951	21	0.280	0.563	0.874	1.427
ADP	1.173	57	0.960	0.003	0.894	6.436
APM	1.046	216	0.308	0.343	1.075	3.850
AT	1.305	42	0.754	0.636	1.263	5.055
BM	6.709	18	4.445	1.173	5.973	20.017
DCT	1.180	395	0.278	0.385	1.215	4.250
PCM	1.103	19	0.535	0.259	1.192	2.113
PCS	1.700	159	2.222	0.008	1.035	18.239
PM	1.132	48	0.230	0.357	1.161	1.537
VSB	3.824	36	3.511	0.840	2.462	16.738
VSC	32.441	16	35.827	3.344	21.851	121.403
All data	1.715	1277	5.393	0.003	1.141	121.403

Tabella 2. ECe 0-50 cm (dS/m), statistiche descrittive per unità pedo-ambientale

Nelle tabelle 4 e 5 sono invece riportati i risultati dei test di significatività delle medie (Tukey-Kramer unequal N, *p*<0.05); il test mostra che per l'intervallo di profondità compreso tra 0 e 50 cm le unità BM (Bonifica del Mezzano) e VSC (Valli salmastre della piana costiera) hanno valori medi di EC_e significativamente diversi ad quelli osservati nelle altre unità; nello strato tra 50 e 100 cm di profondità, anche il valore medio dell'unità VSB (Valli salmastre di recente bonifica) è significativamente diverso dalla media di tutte le altre unità.

Ambiente	Media	N	Dev. Stand.	Minimo	Mediana	Massimo
ADA	1.310	282	0.896	0.363	1.072	9.178
ADD	1.315	23	0.798	0.571	1.017	4.194
ADP	3.407	61	3.387	0.539	1.672	13.04
APM	0.976	222	0.391	0.209	1.036	5.171
AT	1.251	33	0.615	0.480	1.236	3.87
BM	14.806	31	11.758	3.039	9.845	50.43
DCT	1.271	389	0.452	0.386	1.201	5.755
PCM	1.187	24	0.877	0.009	1.127	3.744
PCS	2.336	151	2.706	0.009	1.299	15.369
PM	1.009	49	0.329	0.204	1.111	1.674
VSB	9.780	17	11.900	2.849	6.642	53.517
VSC	37.186	7	38.829	4.946	28.809	121.533
All data	2.076	1289	5.078	0.009	1.141	121.533

Tabella 3. ECe 50-100 cm (dS/m), statistiche descrittive per unità pedo-ambientale

	ADA	ADD	ADP	APM	AT	ВМ	DCT	PCM	PCS	PM	VSB	VSC
dS/m	0.934	0.951	1.173	1.046	1.305	6.709	1.180	1.103	1.700	1.132	3.824	32.441
ADA		1.0000	1.0000	1.0000	1.0000	0.001291	0.9999	1.0000	0.8794	1.0000	0.1053	0.00002
ADD	1.0000		1.0000	1.0000	1.0000	0.001361	1.0000	1.0000	1.0000	1.0000	0.4865	0.00002
ADP	1.0000	1.0000		1.0000	1.0000	0.002681	1.0000	1.0000	0.9999	1.0000	0.1966	0.00002
APM	1.0000	1.0000	1.0000		1.0000	0.001823	1.0000	1.0000	0.9577	1.0000	0.1428	0.00002
ΑT	1.0000	1.0000	1.0000	1.0000		0.003968	1.0000	1.0000	1.0000	1.0000	0.2658	0.00002
BM	0.001291	0.001361	0.002681	0.001823	0.003968		0.002737	0.002166	0.012052	0.002366	0.604650	0.00002
DCT	0.9999	1.0000	1.0000	1.0000	1.0000	0.002737		1.0000	0.9930	1.0000	0.1998	0.00002
PCM	1.0000	1.0000	1.0000	1.0000	1.0000	0.002166	1.0000		1.0000	1.0000	0.6518	0.00002
PCS	0.8794	1.0000	0.9999	0.9577	1.0000	0.012052	0.9930	1.0000		0.9999	0.5397	0.00002
PM	1.0000	1.0000	1.0000	1.0000	1.0000	0.002366	1.0000	1.0000	0.9999		0.1776	0.00002
VSB	0.1053	0.4865	0.1966	0.1428	0.2658	0.604650	0.1998	0.6518	0.5397	0.1776		0.00002
VSC	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	

Tabella 4. ECe 0-50 cm (dS/m), Tukey-Kramer HSD test per significatività delle medie (in rosso le differenze statisticamente significative, p < 0.05).

	ADA	ADD	ADP	APM	AT	ВМ	DCT	PCM	PCS	PM	VSB	VSC
dS/M	1.310	1.315	3.407	0.976	1.251	14.806	1.271	1.187	2.336	1.009	9.780	37.186
ADA		1.000000	0.078559	0.998598	1.000000	0.00002	1.000000	1.000000	0.406019	1.000000	0.00002	0.00002
ADD	1.000000		0.753940	1.000000	1.000000	0.00002	1.000000	1.000000	0.998806	1.000000	0.00002	0.00002
ADP	0.078559	0.753940		0.015896	0.436255	0.00002	0.066331	0.645171	0.912873	0.062548	0.000052	0.00002
APM	0.998598	1.000000	0.015896		1.000000	0.00002	0.999565	1.000000	0.064841	1.000000	0.00002	0.00002
AT	1.000000	1.000000	0.436255	1.000000		0.00002	1.000000	1.000000	0.990075	1.000000	0.00002	0.00002
BM	0.00002	0.00002	0.00002	0.00002	0.00002		0.00002	0.00002	0.00002	0.00002	0.004614	0.00002
DCT	1.000000	1.000000	0.066331	0.999565	1.000000	0.00002		1.000000	0.345125	1.000000	0.00002	0.00002
PCM	1.000000	1.000000	0.645171	1.000000	1.000000	0.00002	1.000000		0.995830	1.000000	0.00002	0.00002
PCS	0.406019	0.998806	0.912873	0.064841	0.990075	0.00002	0.345125	0.995830		0.835356	0.00002	0.00002
PM	1.000000	1.000000	0.062548	1.000000	1.000000	0.00002	1.000000	1.000000	0.835356		0.00002	0.00002
VSB	0.00002	0.00002	0.000052	0.00002	0.00002	0.004614	0.00002	0.00002	0.00002	0.00002		0.00002
VSC	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	

Tabella 5. ECe 50-100 cm (dS/m), Tukey-Kramer HSD test per significatività delle medie (in rosso le differenze statisticamente significative, p <0.05).

Al fine di descrivere con maggiore accuratezza il trend spaziale nei valori di Ece, è stato introdotto un ulteriore criterio di partizione del territorio e suddivisione del data set, quello dei distretti agricoli, assunti in questo caso come coincidenti con le province

amministrative. Le tabelle 6 e 7 riportano le statistiche descrittive di ECe per i due intervalli di profondità.

Provincia	Media	N	Dev. Stand.	Minimo	Mediana	Massimo
ВО	1.134	168	0.448	0.427	1.172	3.927
FC	1.002	6	0.290	0.493	1.090	1.344
FE	3.169	287	8.164	0.384	1.296	121.403
MO	1.100	218	0.531	0.003	1.122	6.436
PC	0.979	263	0.272	0.350	1.064	1.883
PR	0.909	13	0.507	0.256	0.672	1.756
RA	1.884	287	7.711	0.008	1.236	120.959
RE	1.091	24	0.374	0.614	1.094	2.411
RN	0.778	10	0.344	0.343	0.686	1.371
All Grps	1.716	1277	5.395	0.003	1.142	121.403

Tabella 6. Tab.6. ECe 0-50 cm (dS/m), statistiche descrittive per distretto

Provincia	Media	N	Dev. Stand.	Minimo	Mediana	Massimo
ВО	1.331	167	0.726	0.437	5.755	1.236
FC	1.151	18	0.487	0.386	2.618	1.076
FE	4.526	293	9.840	0.071	121.533	1.450
MO	1.815	213	2.019	0.459	13.040	1.156
PC	0.963	264	0.308	0.209	3.175	1.044
PR	0.847	12	0.394	0.363	1.642	0.715
RA	1.493	269	2.419	0.009	37.174	1.266
RE	1.080	40	0.457	0.204	2.893	1.031
RN	0.837	13	0.290	0.331	1.116	0.842
All Grps	2.076	1289	5.078	0.009	121.533	1.141

Tabella 7. ECe 50-100 cm (dS/m), statistiche descrittive per distretto

I risultati dei test di significatività, riportati nelle tabelle 8 e 9 rispettivamente per l'intervallo 0-50 cm e per l'intervallo 50-100 cm, indicano differenze significative tra il distretto di Ferrara (3.17 dS/m) e quelli di Piacenza (0.98 dS/m), Modena (1.10 dS/m) e Bologna (1.13 dS/m). In profondità, il valore medio osservato per Ferrara (4.53 dS/m) risulta significativamente diverso da quelli osservati non solo a Piacenza (0.96 dS/m), Modena (1.10 dS/m) e Bologna (1.33 dS/m), ma anche a Reggio Emilia (1.08 dS/m) e Ravenna (1.49 dS/m).

	во	FC	FE	MO	PC	PR	RA	RE	RN
dS/m	1.134	1.002	3.169	1.100	0.979	0.909	1.884	1.091	0.778
ВО		1.0000	0.0144	1.0000	1.0000	1.0000	0.9360	1.0000	1.0000
FC	1.0000		0.9988	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
FE	0.0144	0.9988		0.0018	0.0001	0.9774	0.0934	0.9172	0.9860
MO	1.0000	1.0000	0.0018		1.0000	1.0000	0.8413	1.0000	1.0000
PC	1.0000	1.0000	0.0001	1.0000		1.0000	0.5850	1.0000	1.0000
PR	1.0000	1.0000	0.9774	1.0000	1.0000		0.9999	1.0000	1.0000
RA	0.9360	1.0000	0.0934	0.8413	0.5850	0.9999		0.9999	0.9999
RE	1.0000	1.0000	0.9172	1.0000	1.0000	1.0000	0.9999		1.0000
RN	1.0000	1.0000	0.9860	1.0000	1.0000	1.0000	0.9999	1.0000	

Tabella 8. ECe 0-50 cm (dS/m), Tukey-Kramer HSD test per significatività delle medie (in rosso le differenze statisticamente significative, p <0.05).

	ВО	FC	FE	MO	PC	PR	RA	RE	RN
dS/m	1.331	1.151	4.526	1.815	0.963	0.847	1.493	1.080	0.837
ВО		1.0000	0.00001	0.992945	0.99897	1.0000	0.999998	1.0000	0.999999
FC	1.0000		0.49895	0.99998	1.0000	1.0000	1.0000	1.0000	1.0000
FE	0.00001	0.49895		0.000011	0.00001	0.657606	0.00001	0.044457	0.601997
MO	0.992945	0.99998	0.000011		0.687387	0.999924	0.999055	0.999124	0.999888
PC	0.99897	1.0000	0.00001	0.687387		1.0000	0.947363	1.0000	1.0000
PR	1.0000	1.0000	0.657606	0.999924	1.0000		0.999997	1.0000	1.0000
RA	0.999998	1.0000	0.00001	0.999055	0.947363	0.999997		0.999989	0.999995
RE	1.0000	1.0000	0.044457	0.999124	1.0000	1.0000	0.999989		1.0000
RN	0.999999	1.0000	0.601997	0.999888	1.0000	1.0000	0.999995	1.0000	

Tabella 9. ECe 50-100 cm (dS/m), Tukey-Kramer HSD test per significatività delle medie (in rosso le differenze statisticamente significative, p <0.05).

Nella tabella 10, sono infine riportati i valori medi osservati nelle unità pedo-ambientali presenti in ciascun distretto per i due intervalli di profondità.

Ambiente	PROV	ECe0_50	N	Ambiente	PROV	ECe50_100	N
ADA	ВО	1.125	60	ADA	ВО	1.374	59
ADA	FC	0.875	1	ADA	FC	2.304	2
ADA	FE	1.141	15	ADA	FE	1.342	32
ADA	MO	0.897	44	ADA	MO	1.795	44
ADA	PC	0.683	53	ADA	PC	0.976	52
ADA	PR	0.792	10	ADA	PR	0.829	10
ADA	RA	0.927	53	ADA	RA	1.302	53
ADA	RE	1.091	14	ADA	RE	1.128	30
ADD	FE	0.951	21	ADD	FE	1.315	23
ADP	FE	0.827	16	ADP	FE	1.982	22
ADP	MO	1.308	41	ADP	MO	4.211	39
APM	ВО	1.072	34	APM	ВО	1.106	35
APM	FC	0.978	3	APM	FC	1.082	6
APM	MO	1.093	49	APM	MO	1.059	48
APM	PC	1.019	116	APM	PC	0.908	116
APM	PR	1.237	2	APM	PR	0.936	2
APM	RA	1.301	3	APM	RA	0.838	3
APM	RE	1.035	5	APM	RE	0.903	5
APM	RN	0.804	4	APM	RN	0.895	7
AT	FE	1.305	42	AT	FE	1.251	33
BM	FE	6.709	18	BM	FE	14.806	31
DCT	ВО	1.172	73	DCT	ВО	1.409	72
DCT	FC	1.102	2	DCT	FC	0.963	10
DCT	FE	1.231	14	DCT	FE	1.365	14
DCT	MO	1.108	84	DCT	MO	1.130	82
DCT	PC	1.113	69	DCT	PC	1.065	70
DCT	PR	1.414	1	DCT	PR	-	-
DCT	RA	1.262	147	DCT	RA	1.402	137
DCT	RE	1.029	3	DCT	RE	1.290	3
DCT	RN	0.513	1	DCT	RN	1.055	1
PCM	RA	1.207	14	PCM	RA	1.312	19
PCM	RN	0.810	5	PCM	RN	0.712	5
PCS	FE	1.838	96	PCS	FE	2.845	99
PCS	RA	1.488	63	PCS	RA	1.368	52
Tahella 10 Sta	tistiche desi	crittive unità ned	n-amhiental	e⊟distretto: valori	medi dS/m	(20022)	

Tabella 10. Statistiche descrittive unità pedo-ambientale ☐ distretto: valori medi, dS/m. (segue)

Ambiente	PROV	ECe0_50	N	Ambiente	PROV	ECe50_100	N	
PM	ВО	1.053	1	PM	ВО	1.068	1	
PM	FE	1.259	16	PM	FE	1.192	16	
PM	PC	1.050	25	PM	PC	0.905	26	
PM	RA	1.060	4	PM	RA	1.204	4	
PM	RE	1.324	2	PM	RE	0.473	2	
VSB	FE	3.824	36	VSB	FE	9.780	17	
VSC	FE	25.536	13	VSC	FE	37.188	6	
VSC	RA	62.366	3	VSC	RA	37.174	1	

Tabella 10. Statistiche descrittive unità pedo-ambientale*distretto: valori medi, dS/m. (continua)

2. Trasformazione dei dati e definizione del modello spaziale

I valori medi calcolati per ciascuna unità pedo-ambientale presente nei diversi distretti colturali (44 possibili combinazioni), sono stati attribuiti a tutte le osservazioni ricadenti nella medesima unità. In questo modo è stato possibile calcolare la differenza tra il valore medio attribuito alla delineazione ed il valore osservato. Tale differenza, detta residuo, è stato oggetto di analisi geostatistica al fine di attribuire un valore a ciascuna cella 1 km x 1km della griglia regionale, assunta come riferimento per la restituzione degli elaborati cartografici su base raster. Al centroide di ciascuna cella della griglia è stato infatti attribuito la combinazione unità pedo-ambientale*distretto nella quale ricade il centroide stesso ed i relativi valori medi calcolati.

La metodologia applicata è una delle possibili varianti del *geostatistic-scorpan kriging* (McBratney et al. 2003). Il modello di variabilità è parzialmente deterministico e parzialmente stocastico: il valore di una proprietà del suolo Z stimata in un punto \mathbf{u} dello spazio all'interno della i^a delineazione può essere descritto come:

$$Z(u)_i = m(u)_i + R(u) + \varepsilon$$

dove $m(u)_i$ è una funzione deterministica che descrive la componente strutturale di Z in u, che in questo caso è data dal valore medio della variabile considerata per un dato gruppo pedo-ambientale in un dato distretto, R(u) è una componente stocastica, localmente variabile ma spazialmente dipendente che rappresenta il residuo da $m(u)_i$, e ϵ un termine d'errore, spazialmente indipendente, con media zero e varianza σ^2 .

La componente strutturale localmente variabile, m(u), è calcolata dai dati, secondo quanto descritto, mentre il termine residuo localmente variabile ma spazialmente dipendente, R(u), è stimato ricorrendo a tecniche di simulazione condizionale sequenziale (Chilès and Delfiner, 1999; Goovaerts, 2001; Van Meirvenne and Goovaerts, 2001; Ungaro et al., 2010).

Diversamente dal kriging, le simulazioni condizionali riproducono esattamente le caratteristiche globali del data set. Questo vuol dire che: a) restituiscono il valore osservato nel punto (attribuendolo al nodo più vicino del grid di stima), b) riproducono l'istogramma dei valori; c) riproducono il semivariogramma. N simulazioni forniscono quindi una serie di N rappresentazioni (mappe) equiprobabili, le cui statistiche possono essere utilizzate per quantificare l'incertezza sia a livello locale (singola cella) che globale (tutta la carta).

Nella tabella 11 sono riportati, per tutte le combinazioni unità pedo-ambientale distretto presenti nella pianura, i valori medi utilizzati per calcolare i residui in corrispondenza di ciascuna osservazione. Quando la numerosità dei dati disponibili per singola unità pedo-

ambientale*distretto è < 5 sono stati elaborati unitariamente dati appartenenti alla stessa unità pedo-ambientale e di distretto affine.

Ambiente	Provincia	ECe0_50	ECe50_100
ADA	BOLOGNA	1.125	1.370
ADA	FERRARA	1.141	1.340
ADA	FORLI' CESENA	0.927	1.300
ADA	MODENA	0.897	1.790
ADA	PARMA	0.729	0.830
ADA	PIACENZA	0.683	0.980
ADA	RAVENNA	0.927	1.300
ADA	REGGIO NELL'EMILIA	1.105	1.150
ADD	FERRARA	0.951	1.310
ADP	FERRARA	0.827	1.980
ADP	MODENA	1.308	4.210
APM	BOLOGNA	1.096	1.170
APM	FORLI' CESENA	1.051	1.080
APM	MODENA	1.088	1.060
APM	PARMA	1.093	0.912
APM	PIACENZA	1.019	0.910
APM	RAVENNA	1.051	1.155
APM	REGGIO NELL'EMILIA	1.093	0.912
APM	RIMINI	1.051	0.890
AT	FERRARA	1.305	1.250
BM	FERRARA	6.709	14.810
DCT	BOLOGNA	1.172	1.410
DCT	FERRARA	1.231	1.360
DCT	FORLI' CESENA	1.255	1.370
DCT	MODENA	1.108	1.140
DCT	PARMA	1.113	1.070
DCT	PIACENZA	1.113	1.070
DCT	RAVENNA	1.262	1.370
DCT	REGGIO NELL'EMILIA	1.108	1.140
DCT	RIMINI	1.255	1.370
PCM	FORLI' CESENA	1.009	1.012
PCM	RAVENNA	1.207	1.310
PCM	RIMINI	0.810	0.710
PCS	FERRARA	1.838	2.840
PCS	RAVENNA	1.488	1.370
PM	BOLOGNA	1.211	1.188
PM	FERRARA	1.211	1.188
PM	PARMA	1.066	0.899
PM	PIACENZA	1.066	0.899
PM	RAVENNA	1.211	1.188
PM	REGGIO NELL'EMILIA	1.066	0.899
VSB	FERRARA	3.824	9.780
VSC	FERRARA	32.441	37.186
VSC	RAVENNA	32.441	37.186

Tabella 11. Riepilogo valori medi utilizzati per caratterizzare le unità pedo-ambientali*distretto, dS/m

Le figure 2 e 3 mostrano infine la distribuzione dei valori medi per le delineazioni ambiente-distretto, rispettivamente per lo strato 0-50 cm e 50-100 cm; la distribuzione geografica illustrata rappresenta quindi il "trend" nei valori di ECe nella pianura, e

rappresenta la componente deterministica del modello assunto per descrivere la variabilità spaziale.

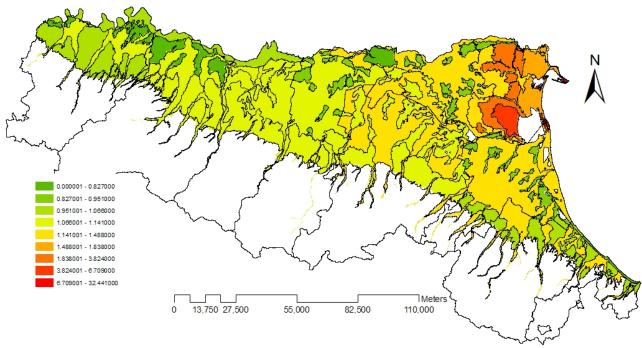


Figura 2. Ece 0-50 cm valori medi (dS/m) per delineazione ambiente*distretto

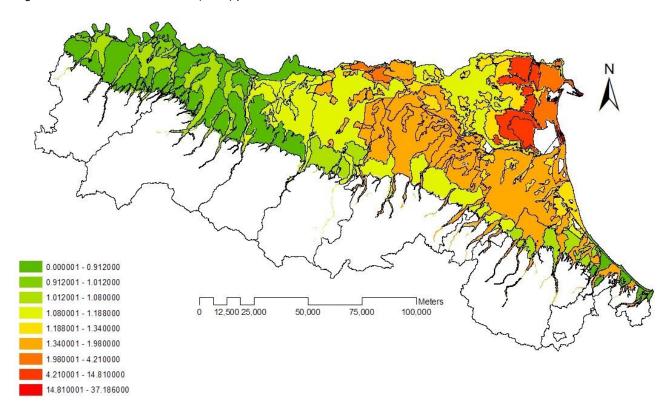


Figura 3. Ece 50-100 cm valori medi (dS/m) per delineazione ambiente*distretto.

Le elaborazioni sono state effettuate con il software geostatistico Wingslib 1.3.1 (Statios, 2000), che lavora in collegamento con gli eseguibili di GSLIB90 (Deutsch and Journel, 1998).

Riassumendo, i residui di ciascuna variabile, ossia gli scarti dai valori medi (localmente variabili in funzione del distretto e dell'ambiente), sono stati oggetto di analisi geostatistica attraverso i seguenti passaggi:

- i). Normalizzazione dei residui (normal score transformation);
- ii). Calcolo del semivariogramma dei residui normalizzati;
- iii). Modellizzazione del semivariogramma sperimentale;
- iv). Simulazioni sequenziali gaussiane (N = 500) dei residui normalizzati;
- v). Trasformazione inversa dei residui e somma dei residui simulati (N = 500) al valore medio: In corrispondenza di ciascuna cella si ottengono dunque 500 valori della variabile di interesse:
- vi). Calcolo del valore medio (Etype) e della deviazione standard per ciascuna cella;
- vii). Redazione degli elaborati cartografici su base raster: ECe e qualità della carta, definita in termini di classi di deviazione standard.

	ECe	ECe res	ECe 0-50 cm	ECe	ECe res.	ECe 50-100 cm
	0-50 cm	0-50 cm	Norm score trans.	50-100 cm	50-100 cm	Norm score trans.
Num oss	1277	1327	1327	1289	1339	1339
Mean	1.715	-0.001	0.000	2.095	0.004	0.000
St. dev	5.393	3.9746	0.999	5.08	3.611	0.999
Maximum	121.403	88.962	3.369	121.53	84.347	3.372
Upper quart.	1.301	0.108	0.675	1.415	0.119	0.675
Median	1.141	0.000	0.000	1.146	-0.036	0.000
Lower quart.	0.816	-0.289	-0.675	0.926	-0.405	-0.675
Minimum	0.003	-29.097	-3.369	0.009	-32.240	-3.352

Tabella 12. Statistiche descrittive osservazioni, residui, residui normalizzati

Nella tabella 12 sono riportate le statistiche descrittive per i dati tal quali, i residui ed i residui normalizzati; la diversa consistenza numerica rilevabile tra i dati osservati ed i residui è dovuta al fatto che sono stati localizzati 50 punti "virtuali" in aree a bassa densità di osservazione nella pianura parmense e nella pianura bolognese. A questi punti è stato attribuito un valore pari alla media dell'ambiente nel quale sono stati localizzati al fine di condizionare la simulazione intorno a valori ritenuti plausibili per le aree in questione.

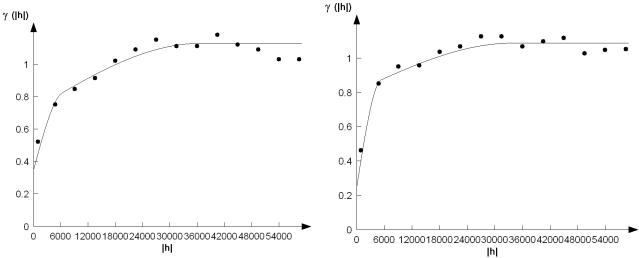


Figura 4. Semivariogrammi sperimentali e modelli per i residui normalizzati; ECe 0-50cm (sin.) e ECe 50-100 cm (ds.)

I semivariogrammi sperimentali omnidirezionali dei residui normalizzati sono riportati nella figura 4; il passo utilizzato per il calcolo del variogramma è di 4500 m. I parametri dei modelli utilizzati per interpolare i variogrammi sperimentali, sono riportati nella tabella 13.

Nei due casi si tratta di un modello doppio sferico con una componente di nugget C₀ (variabilità non strutturata) e due componenti strutturali (C₁ e C₂) con range di autocorrelazione a piccola (a₁) e grande distanza (a₂). Lo strato superficiale è caratterizzato da una quota maggiore di variabilità non strutturata (35%) rispetto allo strato profondo (25%). L'EC_e dello strato superficiale ha una componente a range maggiore C₂ (41%) di poco maggiore di quella a range minore C₁ (37%), mentre il contrario si osserva nello strato più profondo: in questo caso la componente a range minore è predominate (56%) su quella a range maggiore (28%).

Variabile	Co	Sill C₁	Range a₁	Sill C ₂	Range C ₂
EC _e 0-50 cm	0.35	0.37	6367	0.41	36394
EC _e 50-100 cm	0.25	0.56	5308	0.28	33630

Tabella 13. Parametri dei semivariogrammi dei residui normalizzati; lag 4500 m

La procedura è stata implementata su un grid di simulazione di 1000m x 1000m (277 x 132 celle) con i seguenti limiti: Xmin: 524500; Xmax: 801164; Ymin: 866535; Ymax: 998407. Il raggio del vicinaggio di ricerca è stato posto pari a 20 km, il numero minimo e massimo di osservazioni per la simulazione è stato posto pari a 4 e 8 rispettivamente; il numero massimo di nodi simulati da utilizzare è stato posto pari a 12. Le statistiche descrittive dell'intera area risultanti dalla generazione di 500 valori per ciascuna cella del grid sono riportate in tabella 14.

	N Validi	Media	Mediana	Minimo	Massimo	Lower Q	Upper Q	Dev.Std.
SGS sim ECe 0- 50 cm	13301	1.348	1.127	0.003	121.403	0.937	1.365	1.884
Oss ECe 0- 50 cm	1258	1.725	1.144	0.003	121.403	0.816	1.301	5.433
SGS sim EC 50- 100 cm Oss EC 50- 100 cm	13301 1270	1.692 2.095	1.160 1.146	0.003 0.009	121.533 121.533	0.887 0.926	1.524 1.433	2.858 5.113

Tabella 14. Statistiche descrittive dei valori simulati e osservati

Le figure 5 e 7 riportano la distribuzione del valore medio (N=500) simulato in corrispondenza di ciascuna cella per le due profondità; nelle figure 9 e 11 le stesse variabili sono mappate con gli stessi intervalli di scala al fine di rendere confrontabili visivamente i due elaborati

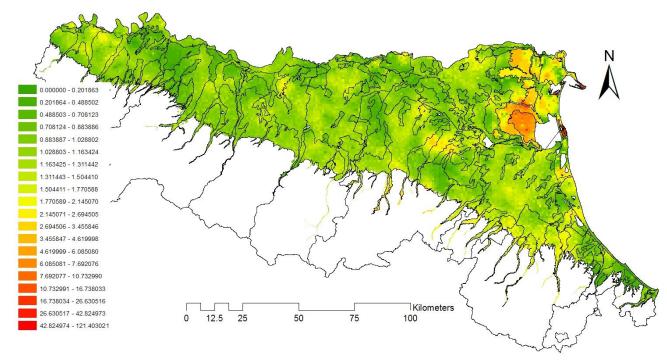


Figura 5. Ece 0 -50 stima valore medio (N = 500) via SGS

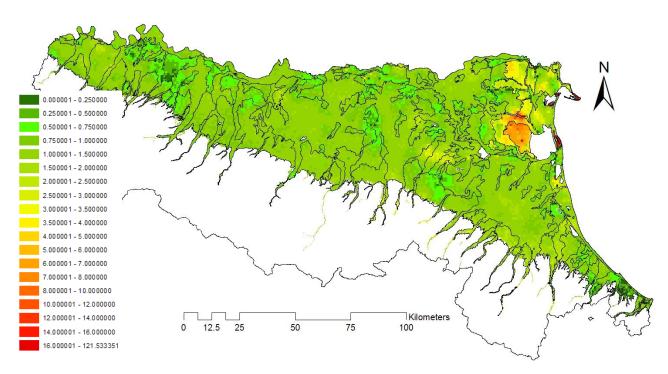


Figura 6. Ece 0 -50 stima valore medio (N = 500) via SGS,; intervalli scalati per confronto con fig. 8

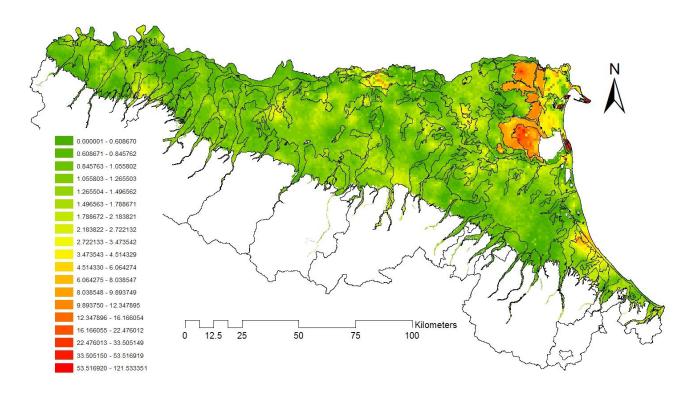


Figura 7. ECe 50 -100 stima valore medio (N = 500) via SGS

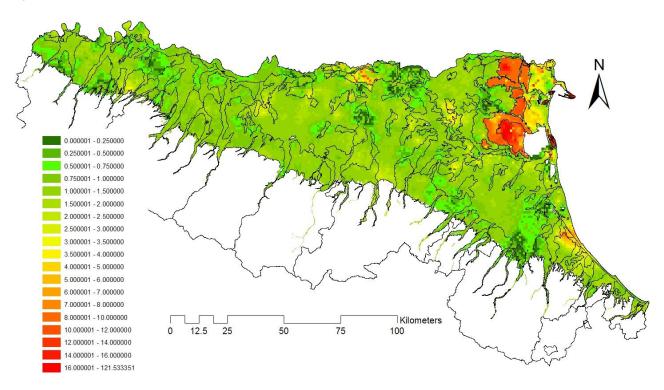


Figura 8. Ece 50 -100 stima valore medio (N = 500) via SGS; intervalli scalati per confronto con fig. 6

La figura 8 mostra i valori medi e gli intervalli di confidenza per i valori simulati alle due profondità per ciascuno degli ambienti; le statistiche descrittive di ciascun ambiente all'interno di ciascun distretto della pianura sono invece riportate nella tabella 15, mentre la tabella 16 sintetizza il numero di celle (e la loro % sul totale) con valori di ECe superiori alle tre soglie di rilevanza agronomica e gestionale, poste pari a 2, 4 e 8 dS/m.

Ambiente	cm dS/m		
ADA FC 8 0.76 0.21 0.50 0.71 1.08 2.63 1.40 1.04 ADA FE 142 0.99 0.31 0.44 0.94 2.03 1.18 0.66 0.03 ADA MO 185 0.88 0.25 0.14 0.88 1.90 1.57 0.75 0.02 ADA PC 115 0.68 0.25 0.22 0.60 1.36 0.93 0.33 0.45 ADA PR 239 0.57 0.22 0.03 0.59 1.54 0.69 0.27 0.08 ADA RA 240 0.94 0.29 0.12 0.93 2.35 1.35 1.13 0.04 ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00	Mediana	Max	
ADA FE 142 0.99 0.31 0.44 0.94 2.03 1.18 0.66 0.03 ADA MO 185 0.88 0.25 0.14 0.88 1.90 1.57 0.75 0.02 ADA PC 115 0.68 0.25 0.22 0.60 1.36 0.93 0.33 0.45 ADA PR 239 0.57 0.22 0.03 0.59 1.54 0.69 0.27 0.08 ADA RA 240 0.94 0.29 0.12 0.93 2.35 1.35 1.13 0.04 ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	1.14	4.21	
ADA MO 185 0.88 0.25 0.14 0.88 1.90 1.57 0.75 0.02 ADA PC 115 0.68 0.25 0.22 0.60 1.36 0.93 0.33 0.45 ADA PR 239 0.57 0.22 0.03 0.59 1.54 0.69 0.27 0.08 ADA RA 240 0.94 0.29 0.12 0.93 2.35 1.35 1.13 0.04 ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	2.56	5.39	
ADA PC 115 0.68 0.25 0.22 0.60 1.36 0.93 0.33 0.45 ADA PR 239 0.57 0.22 0.03 0.59 1.54 0.69 0.27 0.08 ADA RA 240 0.94 0.29 0.12 0.93 2.35 1.35 1.13 0.04 ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	1.12	3.82	
ADA PR 239 0.57 0.22 0.03 0.59 1.54 0.69 0.27 0.08 ADA RA 240 0.94 0.29 0.12 0.93 2.35 1.35 1.13 0.04 ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01	1.47	4.92	
ADA RA 240 0.94 0.29 0.12 0.93 2.35 1.35 1.13 0.04 ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	0.85	2.21	
ADA RE 194 1.13 0.31 0.60 1.09 2.41 1.35 0.50 0.61 ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01	0.69	1.48	
ADD FE 197 0.95 0.28 0.14 0.92 1.84 1.38 0.86 0.00 ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45	1.16	8.36	
ADP FE 95 0.90 0.38 0.14 0.78 2.35 1.09 1.24 0.02 ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49	1.22	3.00	
ADP MO 81 1.00 0.49 0.00 0.99 3.19 3.77 2.43 0.10 APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43	1.15	4.19	
APM BO 533 1.13 0.38 0.23 1.10 3.85 1.13 0.47 0.18 APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 <td>0.89</td> <td>10.89</td>	0.89	10.89	
APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05	3.97	12.51	
APM FC 327 1.46 0.41 0.43 1.48 2.30 1.08 0.74 0.01 APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05	1.12	5.17	
APM MO 311 1.22 0.20 0.42 1.18 1.97 1.19 0.21 0.38 APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 <td>0.99</td> <td>4.23</td>	0.99	4.23	
APM PC 610 1.09 0.26 0.39 1.07 2.45 1.03 0.58 0.01 APM PR 467 0.97 0.20 0.40 0.98 1.76 1.07 0.28 0.45 APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 <td>1.18</td> <td>1.67</td>	1.18	1.67	
APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	0.92	3.68	
APM RA 132 1.41 0.30 0.85 1.38 2.27 1.60 1.66 0.49 APM RE 347 1.07 0.15 0.56 1.06 1.75 1.02 0.26 0.43 APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	1.01	2.21	
APM RN 142 0.71 0.44 0.02 0.87 2.00 1.33 0.54 0.44 AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	0.95	9.03	
AT FE 303 1.16 0.82 0.06 1.07 8.47 1.23 0.81 0.05 BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	0.97	2.15	
BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	1.16	2.56	
BM FE 111 6.28 1.96 1.17 6.35 20.02 13.08 6.79 3.04 DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	1.14	10.27	
DCT BO 1208 1.38 0.58 0.17 1.25 3.78 1.32 0.50 0.02 DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	12.16	50.43	
DCT FC 493 1.60 0.48 0.47 1.62 3.18 1.18 0.66 0.03	1.26	5.76	
	1.07	4.00	
	1.13	2.28	
DCT MO 968 1.16 0.23 0.38 1.15 2.26 1.19 0.39 0.04	1.17	3.32	
DCT PC 468 1.08 0.31 0.07 1.09 2.07 1.12 0.45 0.18	1.09	2.94	
DCT PR 651 1.02 0.25 0.26 1.03 2.11 1.18 0.31 0.30	1.17	2.58	
DCT RA 1035 1.33 0.31 0.24 1.28 4.25 1.19 0.46 0.09	1.13	4.85	
DCT RE 557 1.08 0.24 0.57 1.06 2.35 1.27 0.40 0.16	1.20	3.24	
DCT RN 191 0.70 0.40 0.03 0.63 1.57 1.78 0.42 0.78	1.73	3.71	
PCM FC 14 0.87 0.14 0.68 0.82 1.07 4.08 0.94 3.07	3.65	6.18	
PCM RA 112 1.52 0.41 0.59 1.43 2.64 1.96 1.52 0.11	1.44	6.44	
PCM RN 46 0.66 0.42 0.01 0.71 1.89 1.28 0.73 0.33	1.10	2.80	
PCS FE 280 1.82 0.84 0.02 1.78 4.72 3.20 1.76 0.37	3.03	15.37	
PCS RA 87 1.51 1.55 0.06 1.30 13.29 1.46 1.31 0.01	1.32	7.26	
PM BO 3 1.26 0.19 1.05 1.31 1.41 1.06 0.06 0.99	1.07	1.12	
PM FE 762 1.22 0.32 0.27 1.19 2.64 1.21 0.64 0.01	1.20	4.48	
PM PC 208 1.21 0.24 0.36 1.19 2.03 1.24 0.57 0.22	1.15	2.54	
PM PR 114 1.00 0.14 0.75 0.99 1.51 0.92 0.16 0.42	0.92	1.31	
PM RA 10 1.14 0.28 0.79 1.03 1.70 1.12 0.69 0.42	0.82	2.78	
PM RE 156 1.03 0.22 0.41 1.04 1.76 0.76 0.24 0.03	0.84	1.34	
VSB FE 382 3.34 1.68 0.06 3.06 16.74 9.30 2.86 2.85	9.19	53.52	
VSC FE 31 27.90 18.90 3.34 28.48 121.40 36.59 17.44 4.95	36.77	121.53	
VSC RA 6 31.78 6.26 23.32 30.99 42.83 35.93 0.75 35.01	35.92	37.17	
Tutti 13301 1.35 1.88 0.00 1.13 121.40 1.69 2.86 0.00	1.16	121.53	

Tabella 15. ECe (dS/m). Statistiche descrittive dati simulati

PROV	Num	SGS	SGS	SGS	SGS
		0-50 cm	50-100 cm	0-50 cm	50-100 cm
		ECe>2	ECe>2	ECe>2	ECe>2
во	2204	212	177	9.62%	8.03%
FC	842	127	111	15.08%	13.18%
FE	2583	597	879	23.11%	34.03%
MO	1544	7	127	0.45%	8.22%
PC	1401	9	87	0.64%	6.21%
PR	1472	2	9	0.14%	0.61%
RA	1622	92	150	5.67%	9.25%
RE	1254	7	60	0.56%	4.78%
RN	379	0	84	0.00%	22.16%
Tutti	13301	1053	1684	7.92%	12.66%
PROV	Num	ECe>4	ECe>4	ECe>4	ECe>4
ВО	2204	0	3	0.00%	0.14%
FC	842	0	8	0.00%	0.95%
FE	2583	207	591	8.01%	22.88%
MO	1544	0	41	0.00%	2.65%
PC	1401	0	0	0.00%	0.00%
PR	1472	0	0	0.00%	0.00%
RA	1622	8	56	0.49%	3.45%
RE	1254	0	0	0.00%	0.00%
RN	379	0	0	0.00%	0.00%
Tutti	13301	215	699	1.62%	5.26%
PROV	Num	ECe>8	ECe>8	ECe>8	ECe>8
ВО	2204	0	0	0.00%	0.00%
FC	842	0	0	0.00%	0.00%
FE	2583	47	453	1.82%	17.54%
MO	1544	0	6	0.00%	0.39%
PC	1401	0	0	0.00%	0.00%
PR	1472	0	0	0.00%	0.00%

Tabella 16. Numero di celle e relativa % con valori simulati sopra tre soglie di ECe di interesse agronomico e gestionale, nei nove distretti della pianura emiliano-romagnola

8

0

0

467

0.43%

0.00%

0.00%

0.41%

0.49%

0.00%

0.00%

3.51%

7

0

0

54

1622

1254

379

13301

RΑ

RE

RN

Tutti

Dai dati in tabella, l'8% dell'area di pianura mostra valori di EC_e >2 dS/m nello strato superficiale, mentre in profondità la percentuale sale al 13%. Le province maggiormente interessate sono Ferrara (34%), Rimini (22.2%) e Forlì Cesena (13.2%), appena sotto il 10% Ravenna. Appare interessante anche il dato osservato in provincia di Modena nello strato profondo (8.2%): questi valori sono localizzati nell'unità ADP all'estremità nordorientale della provincia. Valori superiori alla seconda e alla terza soglia sono diffusi quasi esclusivamente nella provincia di Ferrara, nelle unità VSC, VSB e BM.

Al fine di fornire una valutazione qualitativa del grado di affidabilità delle due carte prodotte, la deviazione standard calcolata in corrispondenza di ciascuna cella (N= 500) è stata classata in quattro intervalli definiti in base ai quartili e alla mediana della distribuzione della deviazione standard. La qualità è mostrata nelle figure 13 e 14, per l'EC_e 0-50 cm e l'EC_e 50-100 cm, rispettivamente.

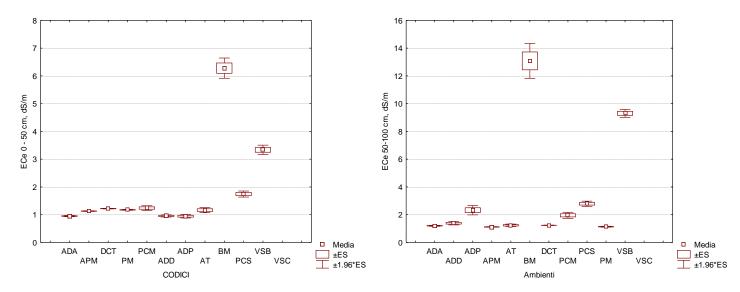


Figura 9. Valori medi ed intervalli di confidenza per gli ambienti: a sin, ECe 0-50 cm, a des. ECe 50-100 cm. I valori medi per l'unità VSC sono fuori scala (28.5 dS/m per ECe 0-50 cm, e 36.5 dS/m per ECe 50-100 cm)

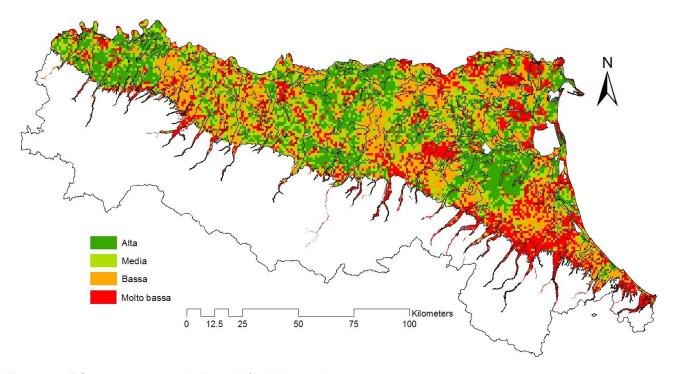


Figura 10. ECe 0-50cm: carta della qualità del dato stimato

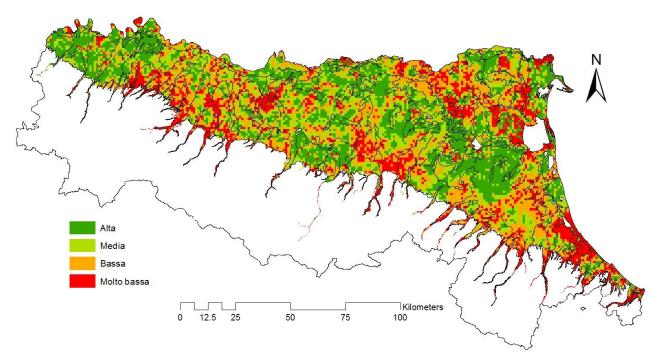


Figura 11. ECe 50-100cm: carta della qualità del dato stimato

Bibliografia

- Chilès and Delfiner, 1999 J.-P. Chilès and P. Delfiner, Geostatistics. Modeling Spatial Uncertainty, Wiley, New York (1999)
- Deutsch, C. V. and Journel, A. G. (1998) GSLIB: Geostatistical Software Library, Second Edition, New York, Oxford University Press.
- Goovaerts, P. 2001. Geostatistical modelling of uncertainty in soil science. Geoderma, 103: 3-26.
- McBratney, A.B., Mendonca Santos, M.L., Minasny, B. 2003. On Digital Soil Mapping. Geoderma 117 (2003) 3–52
- Statios. 2000. WinGslib Version 1.3. Statios Software and Services: San Francisco, CA.
- Ungaro, F., Staffilani, F. Tarocco, P., 2010. Assessing and mapping topsoil organic carbon stock at regional scale: A scorpan kriging approach conditional on soil map delineations and land use. Land Degradation & Development Volume 21, Issue 6, pages 565–581,
- Van Meirvenne M, Goovaerts P. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma. 2001;102:75–100.